Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TCOs: In leitender Position – und erst noch günstig

29.04.2014

Transparente, leitfähige Schichten sind aus unserem Alltag nicht mehr wegzudenken. Sei es in Smart-phones, Tablets, Laptops, Flachbildschirme und (in grösserem Massstab) bei Solarzellen. Doch sie sind teuer und aufwändig herzustellen. Forschenden der Empa ist es nun gelungen, nicht nur eine kostengünstigere, sondern eine einfachere und umweltschonendere Methode zu entwickeln, solche so genannten TCOs zu produzieren.

Durchsichtig und gleichzeitig elektrisch leitfähig sollen sie sein, die Touchscreens für all unsere täglichen Gadgets. Auch Solarzellen funktionieren nicht ohne eine solche Schicht, die zwar das Sonnenlicht hindurchlässt, den entstehenden Strom aber auch ableiten kann. Herkömmliche «transparent conductive oxides» (TCO) bestehen aus einer Mischung aus Indium und Zinnoxid. Indium ist sehr gefragt in der Elektronikindustrie, jedoch rar und somit entsprechend teuer. 


Flexible, Indium-freie Solarzelle mit einer mit der neuen Empa-Methode hergestellten transparent-leitfähigen Schicht.

Eine (zumindest was das Material betrifft) günstigere Variante verwendet Zinkoxid, versetzt mit Aluminium, das meist im Hochvakuum mittels Plasmasputtering auf ein Substrat aufgetragen wird. Das Herstellungs-verfahren ist allerdings komplex und daher ebenfalls teuer. Zudem ist es energieaufwändig und somit auch ökologisch nicht optimal. Empa-Forschende der Abteilung «Dünnfilme und Photovoltaik» haben nun eine wasserbasierte Methode entwickelt, um aus Aluminium und Zinksalzen eine TCO-Schicht auf ein Substrat aufzubringen – ganz ohne Vakuum.

Weniger Energieaufwand

Ein weiterer Vorteil der neuen Methode: Beim «Aushärten» der TCO-Schicht, dem letzten Produktionsschritt, muss das Substrat nicht mehr wie bisher üblich auf 400 bis 600 Grad erhitzt werden, sondern lediglich auf 90 Grad. «Damit ist unsere Methode nicht nur günstiger und umweltschonender, sondern benötigt auch weniger Energie und es können sogar wärmeempfindlichere Substrate wie flexible Kunststoffe verwendet werden», erklärt Harald Hagendorfer aus dem Forschungsteam.

Der grösste Unterschied liegt allerdings im dem Herstellungsprozess zugrundeliegenden Prinzip: Während die TCO-Schicht bei der Sputtering-Methode mit Hilfe eines hochenergetischen Plasmas im Hochvakuum auf das Substrat aufgebracht wird, entsteht sie bei der Empa-Methode durch eine Art molekulare Selbst-organisation. Die TCO-Schicht wächst also «von selbst» – und das erst noch ohne Nachbehandlung bei hohen Temperaturen. Eine kurze Bestrahlung mit einer UV-Lampe genügt für eine hervorragende Leitfähigkeit.

Auch hier gab es allerdings ein Problem zu überwinden: Das Aluminium-Zinkoxid (AZO) wächst bevorzugt spitz zulaufend nach oben – ähnlich wie Stalagmiten in einer Tropfsteinhöhle. Für eine optimale Leitfähigkeit dürfen jedoch zwischen den «Säulen» keine Lücken bestehen. Einfache Lösung des Empa-Teams: Während des Kristallwachstums kommt ein «molekularer Deckel» zum Einsatz. So kann das Material nur beschränkt in die Höhe wachsen und wächst stattdessen auch in die Breite – es entsteht eine kompakte Schicht, die optimal leitfähig und transparent ist.

TCOs sollen noch effizienter werden

Das Empa-Team unter der Leitung von Ayodhya Tiwari ist nun daran, die AZO-Schichten weiter zu verbessern. Punkto elektrischer Leitfähigkeit und Transparenz können sie zwar bereits mit Indium-haltigen TCOs mithalten; beim Einsatz in Solarzellen ist dagegen noch einiges an Optimierung vonnöten. So wollen Tiwari und Co. die TCO-Schichtdicke von ein bis zwei Mikrometern auf einige hundert Nanometer verringern. Damit liessen sich die AZO-Schichten auch in flexiblen Solarzellen anwenden, der Materialeinsatz würde weiter verringert. Ausserdem arbeitet Tiwaris Team zurzeit mit einer weiteren Empa-Forschungsgruppe daran, organische Solarzellen Indium-frei und somit günstiger und nachhaltiger herzustellen. Das Interesse an der neuen Methode scheint jedenfalls gross zu sein. Projektpartner aus der Industrie sind bereits an Bord, was die Möglichkeit eröffnet, die Empa-TCOs bald im grossen Stil herzustellen. 

Literaturhinweis
Highly Transparent and Conductive ZnO: AI Thin Films from a Low Temperature Aqueous Solution Approach, H. Hagendorfer, K. Lienau, S. Nishiwaki, C.M. Fella, L. Kranz, A.R. Uhl, D. Jaeger, L. Luo, C. Gretener, S. Buecheler, Y.E. Romanyuk, A.N. Tiwari, Advanced Materials, 2014, doi: 10.1002-adma.201303186

Weitere Informationen
Dr. Harald Hagendorfer, Dünnfilme und Photovoltaik, Tel. +41 58 765 61 19, harald.hagendorfer@empa.ch
Dr. Yaroslav Romanyuk, Dünnfilme und Photovoltaik, Tel. +41 58 765 41 69, yaroslav.romanyuk@empa.ch
Redaktion / Medienkontakt
Cornelia Zogg, Kommunikation, Tel. +41 58 765 45 99, redaktion@empa.ch

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/146964/---/l=1

Cornelia Zogg | EMPA

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Weltweit erste Solarstraße in Frankreich eingeweiht
16.01.2017 | Wissenschaftliche Abteilung, Französische Botschaft in der Bundesrepublik Deutschland

nachricht Greifswalder Plasmaforscher erforschen Nanomaterialien für effiziente Energiespeicherung
13.01.2017 | Leibniz-Institut für Plasmaforschung und Technologie e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie