Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Industrielle Dünnschicht-Solarmodule werden effizienter

17.02.2011
Forschungsprojekt LIMA ermöglicht erstmals Silizium-Dünnschichtsolarmodule mit einem Wirkungsgrad von über zehn Prozent

Eine nachhaltige Stromversorgung braucht leistungsfähige und kostengünstige Solarmodule. Partner aus Industrie und Wissenschaft haben nun den Weg dahin geebnet, indem sie speziell das Lichtmanagement in Silizium-Dünnschichtsolarzellen verbesserten.

Dadurch wurden Solarmodule mit einem Wirkungsgrad von zehn Prozent bei einer Fläche von über einem Quadratmeter möglich. Gefördert wurde das Projekt LIMA, Lichtmanagement für industriell gefertigte Silizium-Dünnschicht-Solarmodule, mit 4,4 Millionen Euro vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit.

„Rund ein Drittel der Modulleistung kann auf das Lichtmanagement, also die verbesserte Ausnutzung des einfallenden Lichtes, zurückgeführt werden“, erklärt Dr. Jürgen Hüpkes vom Forschungszentrum Jülich, der das Projekt LIMA koordiniert hat. Neben der Siliziumschicht, in der das einfallende Licht in elektrische Energie umgewandelt wird, sind vor allem die elektrischen Kontaktschichten oder Elektroden wichtig für die Funktion einer Solarzelle. Sie führen einerseits den Strom ab und beeinflussen andererseits den Lichtlaufweg im Silizium. Je länger der Weg, desto mehr Energie wird in der Solarzelle umgewandelt.

Der elektrische Frontkontakt liegt flächendeckend auf der Vorderseite des Siliziums und soll möglichst transparent sein, um viel Licht einzulassen. Er besteht aus einem Metalloxid wie etwa Zinkoxid, das die passenden elektrischen und optischen Eigenschaften besitzt. Auf der Rückseite wird das Silizium durch eine zweite Elektrodenschicht und eine vollreflektierende Metallschicht aus Silber abgeschlossen.

Um den Lichtlaufweg in der Zelle möglichst zu verlängern, wird der Übergang zwischen den verschiedenen Schichten aufgeraut und dadurch lichtstreuend gemacht. „Statt auf dem kürzesten Weg, laufen die Lichtstrahlen nun mehr als 16-mal länger durch das Silizium“, erläutert Hüpkes. Zum Aufrauen nutzt man einen oder mehrere Ätzschritte mit Fluss- oder Salzsäure, die auf dem Oxidmaterial eine wohldefinierte Krateroberfläche hinterlassen und dadurch dem Kontakt die gewünschten Lichtstreu-Eigenschaften geben.

Im Projekt LIMA wurden die Verfahren zur Produktion der Elektroden sowie deren Aufrauung entscheidend optimiert. Es ist nun möglich, die weniger als ein tausendstel Millimeter dünnen Schichten auf mehr als fünf Quadratmeter Fläche mit den benötigten Eigenschaften kostengünstig herzustellen. Die ersten von der Industrie mit dem entwickelten Verfahren hergestellten Solarmodule weisen dabei einen Wirkungsgrad von 10,6 Prozent auf, was ein Rekord für Solarzellen auf Basis dieser Dünnschichttechnologie ist.

Dünnschichtsolarzellen basieren auf einer zentralen Schicht, die statt aus einem kristallinen Siliziumwafer mit der Dicke von etwa 0,2 Millimetern aus amorphem und mikrokristallinem Silizium von rund zwei Mikrometern Dicke besteht, also etwa 100 Mal weniger Material enthalten als ein Siliziumwafer. Dadurch werden in der Herstellung sowohl Material als auch Prozess- und Energiekosten gespart. Diese Ersparnis gleicht den etwas geringeren Wirkungsgrad der Dünnschichttechnik im Vergleich zur Wafertechnik bei Weitem aus. In kommenden Projekten sollen die im Labormaßstab bereits erzielten Wirkungsgrade von zwölf Prozent auch auf großformatige Industriemodule übertragen werden.

Weitere entscheidende Vorteile der Dünnschichttechnologie sind, dass von einigen Produzenten auch flexible Trägermaterialen aus Plastik oder Metallfolien verwendet werden und dass sie mit wenigen Arbeitsschritten großformatige Module erzeugt. „Diese Flexibilität erweitert die Einsetzbarkeit. Dünnschichtsolarmodule geben Architekten und Planern neue Gestaltungsmöglichkeiten“, unterstreicht Hüpkes.

Neben dem federführenden Forschungszentrum Jülich waren die Partner im Projekt LIMA die Firmen Applied Materials, Sentech Instruments, Sunfilm, Schott Solar Thin Film, Saint-Gobain Sekurit, Malibu Solar, das Helmholtz-Zentrum Berlin, das Fraunhofer-Institut für Schicht- und Oberflächentechnik und die RWTH Aachen. Gefördert wurde das dreieinhalbjährige Projekt vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit mit 4,4 Millionen Euro.

Mehr Informationen zur Jülicher Photovoltaik:
http://www.fz-juelich.de/iek/iek-5/
Ansprechpartner:
Dr. Jürgen Hüpkes
Tel.: 02461 61 25 94
j.huepkes@fz-juelich.de
Pressekontakt:
Kosta Schinarakis
Tel.: 02461 61 4771
k.schinarakis@fz-juelich.de
Das Forschungszentrum Jülich…
… betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 600 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Kosta Schinarakis | FZ Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/iek/iek-5/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Mit unkonfektionierten Kabeln durch die Schaltschrankwand
26.06.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Gehäuse für schwere Steckverbinder in platzsparender Ausführung
26.06.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy