Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genomlandschaften eines Tumors kartiert

08.11.2007
Wissenschaftler haben eine hochauflösende Landkarte genetischer Veränderungen bei einem Lungenkarzinom erstellt

Die Entschlüsselung der Genome menschlicher Tumore ebnet nach der vollständigen Sequenzierung des menschlichen Erbguts den Weg, die Genomforschung medizinisch nutzbar zu machen. Eine erste vollständige Kartierung haben Forscher nun abgeschlossen. In einem hochauflösenden Genomscan analysierten sie nahezu 400 Proben des menschlichen Adenokarzinoms der Lunge. Dadurch konnten sie einen Katalog genetischer Veränderungen erstellen, der erstmalig die genomischen Landschaften dieses Tumortyps definiert. Sie fanden auch eine bisher unbekannte genetische Veränderung, die einen therapeutischen Ansatzpunkt bieten könnte.


Krebs ist eine Erkrankung des Erbguts. Veränderungen in der Struktur und der Sequenz von Genen können dazu führen, dass einige Signale in der Zelle beeinträchtigt werden. Spielen diese Signale eine Rolle bei der Zellteilung, hört die Zelle möglicherweise nicht mehr auf, sich zu vermehren. Die Sequenzierung des menschlichen Genoms und die begleitende technologische Revolution in der DNA-Analytik haben die Vorraussetzungen geschaffen, die Genome humaner Tumore systematisch zu analysieren. Aber Tumore eines bestimmten Typs wie zum Beispiel Lungenkrebs sind genetisch sehr inhomogen. Da nur ein kleiner Anteil der Tumorzellen jeweils die gleiche genetische Veränderung trägt, ist eine vollständige Sequenzierung sehr aufwendig.

In einem Kraftakt haben Wissenschaftler um Matthew Meyerson vom Broad-Institut des Massachusetts Institute of Technology (MIT) und der Harvard Universität in Cambridge nun erstmalig die genetischen Veränderungen eines humanen Tumors kartiert. Sie verglichen dabei die Anzahl der Genkopien auf den Chromosomen von normalen und entarteten Zellen. Durch die Beteiligung von drei der weltweit größten Genomforschungszentren, zahlreichen Cancer Centers in den USA, Deutschland und Japan und weiteren Forschungseinrichtungen ähnelt das Projekt in seiner Größe dem humanen Genomprojekt. Mitgestaltet und finanziert wurde es durch das National Human Genome Research Institute (NHGRI) und durch das National Cancer Institute (NCI) der USA.

... mehr zu:
»Adenokarzinom »Gen »Genom »Lunge »Sequenzierung »TITF1

Neue Methode und statistisches Verfahren

"Diese Arbeit ist ein Meilenstein auf dem Weg zu einer Vertiefung des Verständnisses über die Biologie von Krebserkrankungen", sagt Roman Thomas, Leiter einer selbstständigen Nachwuchsgruppe am Max-Planck Institut für Neurologische Forschung in Köln und Co-Autor der Studie. "Die systematische Dechiffrierung des Krebsgenoms ist der erste Schritt zu diesem Verständnis." Da sehr viele unterschiedliche Tumore untersucht worden seien und das experimentelle Vorgehen auch sehr kleine Genveränderungen sichtbar gemacht habe, könnte sich diese Studie als Standard für weitere Untersuchungen etablieren.

Die Wissenschaftler sammelten weit über 500 Biopsieproben von Patienten mit einem Adenokarzinom der Lunge und unterzogen sie einer systematischen Qualitätskontrolle. In die Auswertung wurden schließlich 371 Proben aufgenommen. Untersucht wurden die Tumore mit sogenannten SNP-arrays. Diese Methode ermöglichte es, mithilfe von Genomsonden fast 250 000 Positionen auf dem Genom abzutasten. Aufgrund dieser Vielzahl von Messpunkten musste ein neues statistisches Verfahren entwickelt werden, das in der Lage war, eine solche Flut von Informationen auf einzelne, statistisch bedeutsame genetische Veränderungen herunterzubrechen. Das Verfahren heißt "Genomic Identification of Significant Targets in Cancer" (GISTIC), und erst seine Anwendung ermöglichte die Auswertung des Datensatzes in seiner ganzen Tiefe und Breite.

Möglicher Ansatzpunkt für Therapien

Neben bereits bekannten genetischen Veränderungen fanden die Wissenschaftler auch zahlreiche neue. Unter diesen befindet sich die hochgradige Vervielfältigung eines Gens, das unter dem Namen TITF1 bekannt ist. Dieses Gen kodiert für einen Lungen-Entwicklungsfaktor. Mäuse ohne TITF1 weisen schwere Störungen in der Lungenentwicklung auf. Um die Funktion des Gens genauer zu verstehen, schalteten die Wissenschaftler um Matthew Meyerson es in den Tumoren mit einer erhöhten Anzahl an Kopien aus. Als Folge wuchsen die Tumorzellen schlechter und bildeten keine Kolonien mehr. Die Vervielfältigung des TITF1 Gens im Tumor begünstigt offenbar das Tumorwachstum. Da diese Mutation in etwa zwölf Prozent der untersuchten Tumorproben vorhanden war, könnten einige Patienten mit einem Adenokarzinom der Lunge von einer therapeutischen Hemmung des TITF1-Gens profitieren.

"Nur im Zusammenspiel von klinisch tätigen Onkologen, Pathologen, Biostatistikern, Molekular- und Zellbiologen und Genomforschern entsteht die kritische Masse, um solche Vorhaben in die Realität umzusetzen", sagt Thomas, der momentan ein internationales Konsortium aufbaut. In einem ähnlich groß angelegten Projekt sollen in Zukunft bis zu 1000 menschliche Lungentumore genomweit untersucht werden. Zusätzlich dazu werden diesmal aber auch die klinischen Verläufe der Patienten einbezogen werden. "Unser neues Konsortium baut ganz wesentlich auf den Erfahrungen der gerade veröffentlichten Studie auf. Wir versprechen uns von der gemeinsamen Untersuchung klinischer und genetischer Variablen, Patienten in Zukunft gezielter behandeln zu können." Aus diesem Grund arbeitet Thomas eng mit dem Zentrum für integrierte Onkologie in Köln-Bonn zusammen, dem er als assoziiertes Mitglied angehört. Das Ziel ist es, "die Genomforschung ans Krankenbett zu bringen". Technologisch und konzeptionell sind die Weichen hierfür nun bereits gestellt.

Originalveröffentlichung:

Barbara A. Weir, Michele S.Woo, Gad Getz, Sven Perner, Li Ding, Rameen Beroukhim, William M. Lin, Michael A. Province, Aldi Kraja, Laura A. Johnson, Kinjal Shah, Mitsuo Sato, Roman K. Thomas, Justine A. Barletta, Ingrid B. Borecki, Stephen Broderick, Andrew C. Chang, Derek Y. Chiang, Lucian R. Chirieac, Jeonghee Cho, Yoshitaka Fujii, Adi F. Gazdar, Thomas Giordano, Heidi Greulich, Megan Hanna, Bruce E. Johnson, Mark G. Kris, Alex Lash, Ling Lin, Neal Lindeman, Elaine R. Mardis, John D. McPherson, John D. Minna, Margaret B. Morgan, Mark Nadel, Mark B. Orringer, John R. Osborne, Brad Ozenberger, Alex H. Ramos, James Robinson, Jack A. Roth, Valerie Rusch, Hidefumi Sasaki, Frances Shepherd, Carrie Sougnez, Margaret R. Spitz, Ming-Sound Tsao, David Twomey, Roel G. W. Verhaak, George M. Weinstock, David A. Wheeler, Wendy Winckler, Akihiko Yoshizawa, Soyoung Yu, Maureen F. Zakowski, Qunyuan Zhang, David G. Beer, Ignacio I. Wistuba, Mark A. Watson, Levi A. Garraway, Marc Ladanyi, William D. Travis, William Pao, Mark A. Rubin, Stacey B. Gabriel, Richard A. Gibbs, Harold E. Varmus, Richard K. Wilson, Eric S. Lander & Matthew Meyerson
Characterizing the cancer genome in lung adenocarcinoma
Nature, Online-Veröffentlichung, 4. November 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Adenokarzinom Gen Genom Lunge Sequenzierung TITF1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie