Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meister der Selbstheilung

22.03.2005


Grünalge verschließt Wunden durch enzymatische Aktivierung eines Proteinvernetzers


Eine kleine Verletzung ist zwar schmerzhaft, aber für uns normalerweise kein Problem. Wie alle mehrzelligen Organismen bildet unser Körper neues Gewebe rund um die lädierten Zellen. Das können Einzeller nicht. Um eine Verletzung zu überleben, müssen sie die Zelle als solche rasch flicken. Besonders verletzungsgefährdet sind große Einzeller, wie etwa die Grünalge Caulerpa taxifolia, die bis zu mehreren Metern lang werden kann. Sie ist eine wahre Meisterin in Sachen Wundverschluss. Seitdem diese invasive Alge aus tropischen Gewässern in das Mittelmeer und den Pazifik vor Nordamerika eingeschleppt wurde, verdrängt sie dort heimische Arten und richtet dabei großen ökologischen Schaden an.

"Der Erfolg der Alge beruht unter anderem auf ihrer außergewöhnlichen asexuellen Vermehrungsstrategie, die auf ihrer raschen Zellheilung beruht," erklärt Georg Pohnert. "Zerreißt die Alge, werden Zellbestandteile vermischt und wie bei einem Zweikomponentenkleber entsteht aus neutralen Komponenten ein schnell polymerisierendes Gemisch, das die entstehenden Fragmente innerhalb von Sekunden durch einen gelatineartigen Wundverschluss versiegelt. Jedes Zellfragment bildet später den Grundstock für neue Algenkolonien."


Pohnert und sein Team vom Max-Planck-Institut für chemische Ökologie in Jena lösten nun das Rätsel, wie die Alge ihre Wunden derart rasch und effektiv verschließt. Im Grunde benötigt Caulerpa dazu nur Caulerpenin, ein Metabolit aus der Klasse der Sesquiterpene, und eine Esterase, ein Esterbindungen spaltendes Enzym. Wird die Alge verletzt, tritt die Esterase sofort in Aktion, spaltet drei Molekülstückchen ab und wandelt Caulerpenin auf diese Weise in einen reaktiven, als Oxytoxin 2 bezeichneten 1,4-Dialdehyd um. (Eine Aldehyd-Gruppe besteht aus einem Kohlenstoffatom, das ein per Doppelbindung gebundenes Sauerstoffatom sowie ein Wasserstoffatom trägt. Die Zahlen geben die Positionen der Aldehyd-Funktionen relativ zueinander an.)

Reaktive Dialdehyde wie Oxytoxin 2 greifen Proteine an. Über ihre zwei Aldehydfunktionen können sie Proteine regelrecht zu einem polymeren Netzwerk verknüpfen. "Genau das passiert beim Wundverschluss der Algen," sagt Pohnert. "Dass dieser Mechanismus so zuverlässig funktioniert, verdankt die Alge ihrer sehr reaktiven Esterase und der hohen Caulerpenin-Konzentration, die über 1,3% ihres Feuchtgewichts ausmachen kann."
Auch andere Grünalgen-Spezies enthalten Metaboliten, die in ihrem Aufbau Caulerpenin ähneln. Pohnert: "Das von uns beschriebene Prinzip des Wundverschlusses bei Caulerpa könnte daher bei Makroalgen weit verbreitet sein."

Kontakt: Priv. Doz. Dr. G. Pohnert
Max-Planck-Institut für Chemische Ökologie
Hans-Knöll-Str. 8
07745 Jena
Germany
Tel.: (+49) 03641-571-258
Fax: (+49) 03641-571-256
E-mail: pohnert@ice.mpg.de

Angewandte Chemie Presseinformation Nr. 13/2005
Angew. Chem. 2005, 117

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Alge Caulerpa Caulerpenin Esterase Wundverschluss

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE