Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ist der Bauplan unseres Körpers bereits vor der Befruchtung festgelegt?

16.07.2004


Dreifache Immunfluoreszenzfärbung der Maus-Zygote in der Phase vor der ersten Furchung. Väterliche und mütterliche Chromosomenaggregate (blau) sind von scheinbar ungleichmäßigen Klumpen von Zytotubuli (grün) umgeben. Aktin ist in rot dargestellt. Bild: Max-Planck-Institut für Immunbiologie


Schematisches Modell, wie sich die erste Furchungsebene im Maus-Embryo herausbildet. Der männliche und der weibliche Vorkern sind in blau bzw. in rot, der zweite Polkörper orange und die erste Furchungsebene grün dargestellt. Bild: Max-Planck-Institut für Immunbiologie


Wissenschaftler des Freiburger Max-Planck-Instituts für Immunbiologie berichten, dass die spätere Form des Embryos in Eizellen von Säugetieren noch nicht festgelegt ist


Mit Ausnahme der Säugetiere sind bei den meisten Tieren die Körperachsen, wie Vorder- und Rückseite, Kopf und Schwanz, rechts und links, bereits in der Eizelle festgelegt. Neuere Untersuchungen hatten allerdings Hinweise geliefert, dass gewisse morphologische Eigenschaften der Säugetier-Eizelle die zukünftige embryonale Achse vorgeben könnten. Eine am Max-Planck-Institut für Immunbiologie in Freiburg bei Mäusen durchgeführte detaillierte Studie mit Hilfe von Zeitrafferaufnahmen (Time-Lapse-Imaging) hat jetzt jedoch gezeigt, dass sich die Ebene der ersten Zellteilung unabhängig von morphologischen Strukturen in der Eizelle entwickelt. Sie wird vielmehr durch die zufällige Topologie der beiden Vorkerne von Ei- und Samenzelle (Pronuklei) bestimmt. Säugetiereizellen besitzen also anscheinend keine Marker, die die Form des späteren Embryos beeinflussen - eine wichtige Erkenntnis angesichts von über einer Million Babys, die bis heute durch künstliche Befruchtung gezeugt wurden (Nature, 15. Juli 2004).

Besitzt die anscheinend homogene Eizelle von Säugetieren irgend etwas, das es ermöglichen würde, die dreidimensionale Anlage des späteren Embryos vorauszusagen, wie es bei den meisten anderen Spezies möglich ist? Die Herausbildung der Polarität im Präimplantationsembryo von Säugetieren ist seit langem eine unter Wissenschaftlern umstrittene Frage. Doch gerade die Prädetermination in der menschlichen Eizelle ist von zentraler Bedeutung, wenn man die jüngsten Fortschritte in der Reproduktionsmedizin betrachtet: Weltweit sind bisher mehr als eine Million ART (Assisted Reproductive Technology)-Säuglinge entstanden, wobei eine zunehmende Anzahl durch direkte Injektion der Spermien in eine zumeist zufällig gewählte Stelle innerhalb des menschlichen Oozyten mittels ICSI (intracytoplasmic sperm injection) erzeugt wird.


Entwicklungsbiologen nahmen bisher an, dass Säugetiere die einzigen Lebewesen sind, bei denen vorgebildete Orientierungssignale in der befruchteten Eizelle fehlen. Neuere Studien hatten jedoch gezeigt, dass die embryonische-abembryonische (Em-Ab) Achse der Mausblastozyste senkrecht zur ersten Furchungsebene entsteht. Der zweite Polkörper (2pb), das Überbleibsel der zweiten meiotischen Teilung in dem Oozyten, wurde als ein stationärer Marker des animalen Pols (A-Pol) der Eizelle verwendet und angenommen, dass die erste Furchungsebene stets meridional (nord-südlich) zu und übereinstimmend mit der angenommenen animal-vegetalen (A-V) Achse der Eizelle erfolgt. Deshalb meinte man, dass die Polarität des Mäuse-Embryos bereits in der Eizelle festgelegt wird, also wie bei den meisten anderen Spezies.

Wissenschaftler des Max-Planck-Instituts für Immunbiologie in Freiburg haben nun die Entwicklung zahlreicher Mäuse-Embryonen von der Eizelle bis zum Zweizellen-Stadium unter einem eigens dazu entwickelten Aufnahmeverfahren gewissermaßen im "Zeitraffer" verfolgt. Dabei stellten sie überraschend fest, dass bei etwa der Hälfte der Embryonen die erste Furchung getrennt von der A-V-Achse der Eizelle stattfindet und dass sich der zweite Polkörper der Teilungsfurche vor und nach der Teilung annähert. Dies deutet darauf hin, dass der zweite Polkörper - im Gegensatz zu bisherigen Annahmen - keinen stationären "Nordpol" (A-Pol) für den Embryo markiert, und dass deshalb - mangels einer stabilen morphologischen Bezugspunktes, der die A-V-Achse definieren könnte - die These einer vordeterminierten A-V-Achse in der Eizelle von Säugetieren verworfen werden muss.

Doch was bestimmt dann die erste Teilungsebene in der Säugetiereizelle? Handelt es sich um einen vollkommen zufälligen Vorgang? Die Freiburger Wissenschaftler beobachteten, dass sich bei der Maus einige Stunden nach der Befruchtung zwei Vorkerne (Pronuklei) mit jeweils den weiblichen Chromosomen bzw. den männlichen Chromosomen in der Peripherie der Eizelle bilden. Während der folgenden 20 Stunden bewegen sich diese Vorkerne auf das Zentrum der Eizelle zu und stehen sich schließlich gegenüber, ohne zu fusionieren. Anschließend findet die Mitose, also die eigentliche Kernteilung, statt. Deren detaillierte Analyse zeigte nun, dass die erste Furchungsebene immer mit der Ebene, welche die beiden gegenüberliegenden Vorkerne trennt, im Zentrum der Eizelle zusammentrifft (vgl. Abb. 2).

Die Immunfluoreszenzfärbung für das Zytoskelett deutet darauf hin, dass die mikrotubulären Netzwerke bei der Entwicklung dieses Vorgangs eine wichtige Rolle spielen: Hierbei muss die Zelle zwei elterliche Chromosomensätze in ihr Zentrum bringen, bevor sie diese gleichmäßig in zwei Tochterzellen teilt. Die experimentellen Untersuchungen zeigten, dass die erste Furchungsebene nicht in der frühen Interphase bestimmt, sondern vielmehr durch die neu gebildete Topologie der beiden Vorkerne festgesetzt wird.

Für ihre Untersuchungen hatten die Forscher eine spezielle Aufnahmetechnik (Time-Lapse-Imaging) entwickelt, mit der die Entwicklung in der Eizelle dynamisch verfolgt werden kann. Dadurch wurde offensichtlich, dass die Eizelle der Maus keine prädeterminierte Polarität besitzt. Weiterhin noch unbeantwortet bleibt die Frage, wann und wie sich dann die Polarität im Säugetier-Embryo entwickelt. Diese Fragestellung wollen die Forscher als nächstes untersuchen.

Weitere Informationen erhalten Sie von:

Takashi Hiiragi, M.D., Ph.D.
Max-Planck-Institut für Immunbiologie, Freiburg
Tel.: 0761 5108-568, Fax: -569
E-Mail: hiiragi@immunbio.mpg.de

Prof. Davor Solter
Max-Planck-Institut für Immunbiologie, Freiburg
Tel.: 0761 5108-566, Fax: -569
E-Mail: solter@immunbio.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.immunbio.mpg.de

Weitere Berichte zu: Befruchtung Eizelle Embryo Polarität Säugetier

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten