Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraleichtbau steht auf HydraulikAdaptive Tragwerke: Revolution für ressourcenschonendes Bauen

16.04.2012
Maximal belastbar bei minimalem Materialeinsatz – so sollen Tragstrukturen für Bauwerke heute sein.

Diesem Ziel sind Forscher der Universität Stuttgart gemeinsam mit Bosch Rexroth jetzt ein großes Stück näher gekommen. Sie haben eine Holzschale konstruiert, die viel dünner ist als alles, was bisher für möglich gehalten wurde.


Ultraleichtbau
Bosch Rexroth


Ultraleichtbau
Bosch Rexroth

Die Schale überspannt bei nur vier Zentimeter Dicke eine Fläche von mehr als 100 Quadratmetern. Die Konstruktion steht auf dem Campus Vaihingen der Universität Stuttgart und wurde heute erstmals der Öffentlichkeit präsentiert. Möglich wird die extreme Schlankheit der Schale durch den Einsatz eines adaptiven Tragwerks.

Bislang werden Bauwerke immer für eine ganz bestimmte maximale Beanspruchung ausgelegt; eine solche Beanspruchung tritt in der Regel aber nur sehr selten und dann auch nur für kurze Zeit auf. Ein großer Teil der heutzutage eingesetzten Baumaterialien dient also diesen extrem seltenen Spitzenbelastungen und wird faktisch nur wenig genutzt. Ziel des an der Universität Stuttgart entwickelten Ultraleichtbaus ist es deshalb, durch eine aktive Manipulation des Tragwerks eine drastische Materialeinsparung und eine bessere Reaktion auf dynamische Lasten zu erreichen. Im Fall der Stuttgarter Holzschale wird diese Manipulation durch hydraulische Antriebe erreicht: Diese Antriebe sitzen an den Auflagerpunkten der Schale und erzeugen Bewegungen, die durch Wind, Schnee und andere Lasten hervorgerufene Verformungen und Materialbeanspruchungen gezielt kompensieren.
Das Institut für Leichtbau Entwerfen und Konstruieren (ILEK) und das Institut für Systemdynamik (ISYS) der Universität Stuttgart haben in Zusammenarbeit mit Bosch Rexroth erstmalig ein adaptives Bauwerk im großen Maßstab realisiert. Die Schale aus Holz ist auf vier Punkten gelagert. Drei der Auflagerpunkte können durch Hydraulikzylinder individuell bewegt und frei im Raum positioniert werden. Sensoren erfassen den Belastungszustand an zahlreichen Punkten des Tragwerks. Gezielte Bewegungen der Auflagerpunkte wirken veränderlichen Lasten (zum Beispiel durch Schnee oder Wind) entgegen und reduzieren damit Verformungen und Materialspannungen. Dies reduziert im Vergleich zur konventionellen, passiven Bauweise den Materialeinsatz für die Schalenkonstruktion erheblich. Der Belastungsausgleich erfolgt über eine Rexroth-Steuerung, die speziell für hydraulische Antriebe entwickelt wurde. Die Kernaufgabe der Steuerung ist es, die komplexen hydraulischen Regelungsaufgaben des Schalentragwerkes durchzuführen. Das Tragwerk kann so innerhalb von Millisekunden auf eine Änderung im Belastungszustand reagieren.

Aktive Schwingungsdämpfung und die Anpassung an wechselnde Lasten sind in vielen Bereichen des Bauwesens anwendbar, zum Beispiel bei Stadiendächern, bei Hochhäusern, bei weitspannenden Fassadenkonstruktionen oder bei Brücken. Die Ergebnisse des Forschungsprojekts an der Universität Stuttgart ermöglichen somit eine völlig neue Bauweise, die nicht nur Ressourcen schont, sondern die gleichzeitig auch die Leistungsfähigkeit tragender Konstruktionen deutlich erhöht. Die aktive Dämpfung von dynamisch wirkenden Lasten (beispielsweise aus der Einwirkung von Wind, Erdbeben oder Explosionen) ermöglicht nämlich nicht nur eine drastische Gewichtsreduzierung, sondern verringert darüber hinaus auch Materialermüdungen und Schäden an der Struktur.

Um Lasten und Schwingungen aktiv kompensieren zu können, müssen diese Einflussfaktoren zunächst präzise erfasst beziehungsweise prognostiziert werden; in einem zweiten Schritt müssen die notwendigen Gegenbewegungen in Echtzeit berechnet (und ebenso zeitnah umgesetzt) werden. Hierfür haben die Forscher der Universität Stuttgart Simulationsmodelle entwickelt, die eine exakte Vorhersage des Verhaltens der Struktur ermöglichen. Hierbei wird die Materialbeanspruchung ebenso wie das Schwingungsverhalten unter statischen und dynamischen Einwirkungen berücksichtigt. Diese Simulationsmodelle dienen als Grundlage für die Entwicklung von Regelungskonzepten, welche die erforderlichen Gegenbewegungen zur Last- und Schwingungskompensation in Abhängigkeit der erfassten Messgrößen berechnen. Diese Bewegungen werden dann durch die Hydraulik präzise umgesetzt.

Die wissenschaftlichen Grundlagen für das Projekt wurden in den letzten Jahren gemeinsam am ILEK und am ISYS gelegt. Die Firma Bosch Rexroth lieferte die aktiven Elemente des Prototyps. In enger Zusammenarbeit mit der Universität Stuttgart übernahm die Firma die Projektierung, Auswahl und Auslegung der Hydraulik ebenso wie ihre Inbetriebnahme. Das Institut für Leichtbau Entwerfen und Konstruieren (ILEK) ist Pionier in der Erforschung adaptiver Systeme im Bauwesen; mit dem Stuttgarter Träger wurde bereits vor mehreren Jahren ein erster Prototyp in kleinem Maßstab geschaffen. Die Kernkompetenz des Instituts für Systemdynamik (ISYS) liegt in der Analyse dynamischer Systeme und deren gezielter Beeinflussung. Hierzu entwickelt das Institut Regelungsstrukturen, die koordinierte Bewegungen des Tragwerks erzeugen. Die Firma Bosch Rexroth ist einer der weltweit führenden Spezialisten für Antriebs- und Steuerungstechnologien. Das Unternehmen ist Partner für Mobile Applications, Machinery Applications and Engineering, Factory Automation sowie Renewable Energies. Als The Drive & Control Company entwickelt, produziert und vertreibt Bosch Rexroth seine Komponenten und Systeme in über 80 Ländern.
Das Projekt ist als Funktionsmuster in die von der Deutschen Forschungsgemeinschaft (DFG) geförderte Forschergruppe ‚Hybride Intelligente Konstruktionselemente’ integriert. Diese Forschergruppe bringt Experten des Maschinenbaus, der Luft- und Raumfahrttechnik, des Bauingenieurwesens und der Verfahrenstechnik zusammen. Wissenschaftliche Unterstützung erhielt das Projekt darüber hinaus durch Prof. Leander Bathon (Institut für Baustoffe und Konstruktion der Hochschule RheinMain Wiesbaden) und durch Prof. Uwe Heisel (Institut für Werkzeugmaschinen der Universität Stuttgart). Das Projekt wurde außerdem von folgenden Industriepartnern unterstützt: Sensor-Technik Wiedemann GmbH, Eschenbach Zeltbau GmbH & Co. KG, Wilhelm Gerüstbau GmbH, Ulrich Lübbert Warenhandel GmbH & Co. KG, Holzwerk Friedrich Wahl GmbH & Co. KG, Leitz GmbH & Co. KG und Rütgers Organics GmbH.

Projektbeteiligte
Institut für Leichtbau Entwerfen und Konstruieren (ILEK), Universität Stuttgart
Prof. Werner Sobek, Stefan Neuhäuser, Christoph Witte, Dr. Walter Haase
Institut für Systemdynamik (ISYS), Universität Stuttgart
Prof. Oliver Sawodny, Martin Weickgenannt, Dr. Eckhard Arnold Bosch Rexroth AG, Lohr a. Main
Dr. Johannes Grobe, André Fella

Kontakt
Stefan Neuhäuser: Tel.: 0711 685-63705 E-Mail: stefan.neuhaeuser@ilek.uni-stuttgart.de
Martin Weickgenannt: Tel.: 0711 685-66960 E-Mail: martin.weickgenannt@isys.uni-stuttgart.de

André Fella: Tel.: 09352 18-1010 E-Mail: andre.fella@boschrexroth.de

Weiterführende Informationen

http://www.smartshell-stuttgart.de
http://www.uni-stuttgart.de/ilek
http://www.isys.uni-stuttgart.de
http://www.boschrexroth.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht BAUFRITZ-Musterhaus - Tradition im hier und jetzt: Heimat 4.0
07.05.2018 | Bau-Fritz GmbH & Co. KG, seit 1896

nachricht Gute Raumakustik in Arbeitsumgebungen: Konzentrierter arbeiten im Büro
02.05.2018 | Fraunhofer-Institut für Bauphysik IBP

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das große Aufräumen nach dem Stress

25.05.2018 | Biowissenschaften Chemie

APEX wirft einen Blick ins Herz der Finsternis

25.05.2018 | Physik Astronomie

Weltneuheit im Live-Chat erleben

25.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics