Heiße Elektronen in Kohlenstoff – Graphit verhält sich wie ein Halbleiter

Grundlage dieser Materialien sind atomar dünne Schichten aus regelmäßig angeordneten Kohlenstoffatomen, zum Beispiel eine einzelne ebene Schicht in sogenanntem „Graphen“ oder aufgerollte Schichten in Kohlenstoff-Nanoröhrchen.

Die Eigenschaften von Elektronen in solchen Strukturen sind verwandt mit denen in Graphitkristallen, die aus einem Stapel vieler Graphenschichten bestehen. Trotz intensiver Forschung ist das grundlegende Verhalten von Elektronen nicht vollständig verstanden und wird kontrovers diskutiert.

Wissenschaftler des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie in Berlin, Markus Breusing, Claus Ropers und Thomas Elsässer, haben jetzt das Verhalten von Elektronen in dünnen kristallinen Graphitschichten in Echtzeit untersucht. Wie sie in der Zeitschrift Physical Review Letters (Band 102, Ausgabe 08, 086809/1-4, 2009) berichten, zeichneten sie die Bewegungen der Elektronen mit einer bisher unerreichten Zeitauflösung von 10 Femtosekunden (eine Femtosekunde ist das Millionstel einer Milliardstel Sekunde) auf. Dazu regten sie Elektronen mit ultrakurzen Laserimpulsen in Zustände hoher Energie an und beobachteten ihre Rückkehr zum Gleichgewicht.

Einzelne Schritte dieses Ablaufs lassen sich zeitlich trennen und so die momentane Verteilung der Elektronen auf verschiedene Zustände bestimmen. Innerhalb von 30 Femtosekunden bilden die Elektronen ein heißes Gas mit einer extrem hohen Temperatur von 2500 °C aus, das im Kristall innerhalb von nur 500 Femtosekunden auf etwa 200 °C abkühlt. Die dabei freiwerdende Energie wird an das Kristallgitter übertragen. Danach kehren die Elektronen auf einer deutlich langsameren Zeitskala in ihre ursprünglichen Zustände zurück. Diese Untersuchungen zeigen erstmals eindeutig, dass sich Graphit auf ultrakurzen Zeitskalen wie ein Halbleiter, also etwa wie Silizium oder Galliumarsenid, und nicht wie ein Metall verhält.

Die beobachtete Dynamik der Elektronen hat einen starken Einfluss auf den elektrischen Transport, wie etwa Ströme, die bei hohen Frequenzen durch das Material fließen. Die Beobachtungen sind von grundlegender Bedeutung für künftige elektronische Bauelemente aus Kohlenstoff, die hohe elektrische Spannungen oder hohe Frequenzen verarbeiten.

Kontakt:

Markus Breusing, Prof. Thomas Elsässer, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2 A, 12489 Berlin (breusing@mbi-berlin.de, elsasser@mbi-berlin.de)

Prof. Claus Ropers, CRC Nanospektroskopie und Röntgenbildgebung, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (cropers@gwdg.de)

Media Contact

Christine Vollgraf Forschungsverbund Berlin e.V.

Weitere Informationen:

http://www.fv-berlin.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer