Schwebende Kriställchen

Entscheidend für die Wirksamkeit kristalliner Pharmaka ist nicht nur die molekulare Zusammensetzung, sondern oft auch die Kristallform, denn diese bestimmt die Löslichkeit und die Auflösegeschwindigkeit und damit die Bioverfügbarkeit.

Forscher aus Cambridge (USA) haben kürzlich eine Methode entwickelt, mit der sich Kristallformen in einem Magnetfeld nach ihrer Dichte trennen lassen. In der Zeitschrift Angewandte Chemie demonstrieren sie jetzt die außerordentliche Leistungsfähigkeit der Trennung per „magnetischer Levitation“.

Arzneistoffe sind nicht die einzige Produktklasse, bei der verschiedenen Kristallformen zu Problemen führen können. Bei Farbstoffen und Pigmenten etwa kann eine andere Kristallstruktur eine abweichende Farbe bedeuten und bei Explosivstoffen kann die Zündempfindlichkeit unterschiedlich ausfallen.

Nicht immer ist es möglich, die Kristallisation so zu beeinflussen, dass nur die gewünschte Kristallform auftritt, eine saubere Trennung ist oft schwierig oder sehr aufwändig. Das Team um Allan S. Myerson vom Massachusetts Institute of Technology und George M. Whitesides von der Harvard University hat kürzlich eine einfache Methode entwickelt, mit der sich Kristallformen minutenschnell, bequem und zuverlässig durch magnetische Levitation trennen lassen. Sie basiert darauf, dass verschiedene Kristallmodifikationen fast immer unterschiedliche Dichten haben.

Und so funktioniert das pfiffige Verfahren: Zwei Magneten werden in einem Abstand von 4,5 cm so übereinander platziert, dass gleiche Pole zueinander weisen. So entsteht ein Magnetfeld mit einem Minimum in der Mitte zwischen den Magneten. Die Kristalle werden in einer paramagnetischen Lösung suspendiert und in einem Röhrchen in das Magnetfeld gegeben. Die Gravitation zieht die Kristalle in Richtung Gefäßboden. Sinkt ein Kristall in Richtung des unteren Magneten, „verdrängt“ es dafür ein Volumenelement der paramagnetischen Lösung und „schiebt“ es nach oben. Das magnetische Feld wirkt auf die paramagnetische Lösung – je näher am Magneten, desto stärker die Anziehungskraft.

Das Kriställchen sinkt so lange, bis es eine Höhe über dem Magneten erreicht hat, in der die Gravitationskraft genauso groß ist wie die magnetische Anziehungskraft auf ein entsprechendes paramagnetisches Volumenelement. An dieser Stelle bleibt der Kristall in der Schwebe. Da die Gravitationskraft von der Dichte des Kristalls abhängt, ist die Höhe, ab der dieser in der Schwebe bleibt, für verschiedene Kristallformen unterschiedlich. Die Lösung wird nun einfach mit einer Kanüle aus dem Röhrchen abgezogen und in mehrere Fraktionen unterteilt.

Anhand der Trennung verschiedener Kristallformen der Verbindungen 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophencarbonitril, Sulfathiazol, Carbamazepin und trans-Zimtsäure konnten die Wissenschaftler jetzt eindrucksvoll die Leistungsfähigkeit ihrer neuen Methode belegen, mit der sich noch Kristallformen mit Dichteunterschieden von nur 0,001 g/cm3 trennen lassen.

Angewandte Chemie: Presseinfo 34/2013

Autor: George M. Whitesides, Harvard University, Cambridge (USA), http://gmwgroup.harvard.edu/content.php?page=contact

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201305549

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer