Wie werden Proteine gefaltet?

Eine erste Antwort auf diese Frage können nun Wissenschaftler des Zentrums für Medizinische Biotechnologie (ZMB) der Universität Duisburg-Essen (UDE) geben. Prof. Peter Bayer und Dr. Jonathan W. Mueller konnten nämlich kürzlich einzelne Wasserstoff-Atome im Kern von sehr hoch auflösenden Proteinkristallen sichtbar machen.

Zu den wichtigsten Bausteinen des Lebens gehören Proteine. Damit sie im Körper richtig funktionieren, muss deren Aminosäuresequenz in jeder Zelle in eine definierte dreidimensionale Struktur gebracht werden. Gelingt dieser hochkomplizierte Faltungsvorgang nicht, kann dies zu zahlreichen Krankheiten führen, zum Beispiel Krebs, Alzheimer oder Parkinson.

Mediziner und Biologen fragen sich schon seit langem, wie diese Prozesse im Detail ablaufen. Wie funktionieren zum Beispiel Faltungshelfer-Enzyme wie die Parvuline? Eine erste Antwort auf diese Frage können nun Wissenschaftler des Zentrums für Medizinische Biotechnologie (ZMB) der Universität Duisburg-Essen (UDE) geben. Prof. Peter Bayer und Dr. Jonathan W. Mueller konnten nämlich kürzlich einzelne Wasserstoff-Atome im Kern von sehr hoch auflösenden Proteinkristallen sichtbar machen. Sie veröffentlichten ihre Ergebnisse jetzt in der renommierten Fachzeitschrift „Journal of the American Chemical Society“.

Faltungshelfer-Enzyme des Parvulin-Typs sorgen dafür, dass die dreidimensionale Eiweißstruktur ausgebildet und aufrechterhalten wird. Es gibt zwar schon zahlreiche Studien zur Struktur und zum Mechanismus dieser Enzyme, aber die Funktion einzelner Aminosäuren im katalytischen Zentrum von Parvulinen war bisher ungeklärt.

Wasserstoff-Atome sind so winzig, dass sie beim Röntgen von Proteinen in der Regel nicht zu erkennen sind. Trotzdem ist es zusammen mit Wissenschaftlern der Uni Bayreuth nun gelungen, sie direkt innerhalb des Proteinkerns von Par14 sichtbar zu machen.

Dr. Mueller: „Das hat uns enorm weitergebracht. Denn so konnten wir erkennen, dass die unterschiedlichen Aminosäuren durch ein Netzwerk von Wasserstoffbrücken miteinander verbunden sind.“ Wird eine dieser Aminosäuren gegen andere Proteinbausteine ausgetauscht, verschwindet die katalytische Aktivität des Proteins fast vollständig. Das beweist, dass das ausgedehnte Netzwerk von Wasserstoffbrückenbindungen ein zentraler Bestandteil von Faltungshelfer-Enzymen des Parvulin-Typs ist.

Weitere Informationen:

Prof. Dr. Peter Bayer, Dr. Jonathan W. Mueller, Tel. 0201/183-4676, peter.bayer@uni-due.de, www.uni-due.de/biochemie

Redaktion: Beate H. Kostka, Tel. 0203/379-2430

Media Contact

Beate Kostka idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer