2D-Spektroskopie ermöglicht "Filmaufnahmen" von Proteinbewegungen

Mit der zweidimensionalen Infrarotspektroskopie ist es einem Team aus Züricher und Bochumer Forschern (Prof. Dr. Wolfram Sander, RUB, Prof. Dr. Peter Hamm, Uni Zürich) erstmals gelungen, diese sehr schnellen Bewegungen von Peptiden – kurzen Proteinstücken – zu filmen. Die Methode erlaubt es zu bestimmen, ob zwei molekulare Gruppen im Peptid zu einem bestimmten Zeitpunkt benachbart sind oder nicht und eignet sich daher für die experimentelle Überprüfung von theoretischen Modellen. Über ihre Ergebnisse berichten die Forscher in der aktuellen Ausgabe des Wissenschaftsmagazins NATURE.

Zahnräder der molekularen Maschinen

Proteine sind die Bausteine des Lebens. Meistens weisen sie eine wohldefinierte dreidimensionale Struktur auf, die jedoch alles andere als statisch ist: Proteine sind hochdynamische Objekte, die ihre Arbeit als 'molekulare Maschine' verrichten. Sie ändern fortwährend ihre Struktur, binden an andere Stoffe und transportieren diese zu ihrem Bestimmungsort, oder sie steigern die Effizienz bestimmter chemischer Reaktionen. Gäbe es ein Mikroskop, mit dem man ein Protein sichtbar machen könnte, so würde man feststellen, dass einzelne Atome oder Molekülgruppen innerhalb des Proteins – die „Zahnräder“ der molekularen Maschine – sich auf einer unvorstellbar kurzen Zeitskala von wenigen Pikosekunden (10-12 s = 0.000 000 000 001 s) bewegen. „Licht, das die Strecke von der Erde zum Mond innerhalb einer Sekunde zurücklegen kann, schafft es in dieser kurzen Zeit von einer Pikosekunde gerade einmal 0,3 mm weit; das entspricht in etwa der Dicke von drei Blatt Papier“, verdeutlicht Prof. Sander. Man glaubt, sehr viel über diese schnelle Dynamik aus theoretischen Berechnungen zu wissen – deren experimentelle Beobachtung und Verifizierung erweist sich jedoch als extrem schwierig.

„Film“ mittels 2D-Spektroskopie

Den Forschern ist es nun gelungen, die superschnelle Veränderung eines kleinen Peptids sichtbar zu machen; sie „filmten“ buchstäblich das Peptid, während es sich von einer Struktur in eine andere umwandelte. Verwendung fand hierbei eine neuartige spektroskopische Methode, die so genannte zweidimensionale Infrarotspektroskopie. Diese ermöglicht es zu bestimmen, ob zwei molekulare Gruppen im Peptid zu einem bestimmten Zeitpunkt räumlich benachbart sind oder nicht. „Diese Technik eröffnet ein neues, bisher unzugängliches Zeitfenster für die Beobachtung der Strukturdynamik von Biomolekülen und erlaubt deshalb eine sehr direkte experimentelle Verifizierung theoretischer Modelle“, erläutert Prof. Sander.

Titelaufnahme

Christoph Kolano, Jan Helbing, Mariusz Kozinski, Wolfram Sander & Peter Hamm: „Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy“. NATURE, (2006) Vol 444 (7118) pp.469-472

Weitere Informationen

Prof. Dr. Peter Hamm, Physikalisch-Chemisches Institut, Universität Zürich, CH-8057 Zürich, Tel.: +41 44 635 4431, phamm@pci.unizh.ch, http://www.pci.unizh.ch/

Prof. Dr. Wolfram Sander, Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Tel.: 0234/32-24593, wolfram.sander@rub.de, http://www.orch.ruhr-uni-bochum.de/sander/

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.pci.unizh.ch/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer