Intelligente Materialien für Robotik und Prothesen

Biomimetische Fischflosse mit dielektrischen Elastomeraktoren und Faserverstärkung
© ITM/TUD

DFG-Graduiertenkolleg 2430 geht in die zweite Förderphase.

Dresdner Forschende wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu die 2. Phase des Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Professor Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten viereinhalb Jahren werden neben Sach- und Projektmitteln insgesamt 22 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

Ziel ist die simulationsgestützte Entwicklung intelligenter Werkstoffkombinationen für sogenannte autarke Faserverbundwerkstoffe. Dabei werden Aktoren und Sensoren in die Strukturen integriert und müssen nicht mehr wie bisher nachträglich platziert werden. In der ersten Förderphase wurden hierfür wichtige Grundsteine gelegt, um große zweidimensionale Verformungen in weichen, biomimetischen Strukturen zu erzielen. Die weitere Förderung durch die DFG ist eine Bestätigung für die herausragenden bisherigen Ergebnisse. Darauf aufbauend stehen in der zweiten Förderphase ionische und helixförmige Aktor-Sensor-Konzepte im Fokus. Durch die Kombination mit intelligenten Auslegungs- und Regelungsalgorithmen werden autarke, sich dreidimensional verformende Materialsysteme entstehen. So werden diese Systeme robuster, komplexe Vorformungsmuster lassen sich an der gewünschten Stelle maßgeschneidert einstellen – und zwar reversibel und berührungslos.

Faserverbundwerkstoffe werden aufgrund der hohen spezifischen Steifigkeiten und Festigkeiten sowie der Möglichkeit zur maßgeschneiderten Einstellung dieser Eigenschaften immer stärker in bewegten Komponenten eingesetzt. Durch die Integration adaptiver Funktionalitäten in derartige Werkstoffe entfällt die Notwendigkeit einer nachträglichen Aktorplatzierung und die Robustheit des Systems wird signifikant verbessert. Besonders vielversprechend sind dabei Aktoren und Sensoren auf textiler Basis, wie sie am ITM erforscht und entwickelt werden, da diese direkt im Fertigungsprozess in die Faserverbundwerkstoffe integriert werden können.

Mit ihren innovativen Eigenschaften sind interaktive Faser-Elastomer-Verbunde für zahlreiche Anwendungsfelder im Maschinen- und Fahrzeugbau, in der Robotik, Architektur, Orthetik und Prothetik prädestiniert: Beispiele sind Systeme für präzise Greif- und Transportvorgänge (z.B. bei Handprothesen, Verschlüssen und verformbaren Membranen) und Bauteile (z.B. Trimmklappen für Land- und Wasserfahrzeuge).

Wissenschaftliche Ansprechpartner:

Prof. Chokri Cherif (GRK-Sprecher)
Tel.: +49 351 463-39300
E-Mail: chokri.cherif@tu-dresden.de

Weitere Informationen:

https://tu-dresden.de/ing/forschung/graduiertenkollegs/grk2430 Zum Graduiertenkolleg
https://cloudstore.zih.tu-dresden.de/index.php/s/jZGqkSKQS9D7SBF Download

Media Contact

Anne-Stephanie Vetter Pressestelle
Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer