Forscher-Team erreicht den ersten Platz beim Best Paper Award auf dem Intel MARC Symposium 2012

Das Autorenteam der BTU-Lehrstühle Verteilte Systeme/Betriebssysteme und Theoretische Informatik (Randolf Rotta, Thomas Prescher, Jana Traue, Prof. Jörg Nolte) erzielte auf dem Intel MARC Symposium, das am 19./20. Juli 2012 in Toulouse stattfand, für die Arbeit „Data Sharing Me-chanisms for Parallel Graph Algorithms on the Intel SCC“ den 1. Platz beim Best Paper Award.

Der Lehrstuhl Verteilte Systeme/Betriebssysteme nimmt seit zwei Jahren am Intel MARC Programm (Manycore Applications Research Community) teil. In diesem Programm werden neue Softwarearchitekturen für den Intel Single Chip Cloud Computer (SCC) untersucht, einem experimentellen Prozessor der Firma Intel mit 48 Rechenkernen.

Der Prozessor ist nicht auf dem Markt erhältlich, sondern dient ausschließlich Forschungs- und Entwicklungszwecken. Dafür steht er einer begrenzten Anzahl ausge-wählter Forschergruppen auf der ganzen Welt zur Verfügung, zu denen auch der BTU-Lehrstuhl Verteilte Systeme/Betriebssysteme gehört.

Im Rahmen des Intel MARC Programms forscht der Lehrstuhl an Konsis-tenzmodellen und Plattformen für die Programmierung von Rechnersys-temen mit nichtkonsistenten Zwischenspeichern. Die ausgezeichnete Ar-beit zeigt, dass solche Plattformen geeignet und notwendig sind, um komplexe, parallele Graph-Algorithmen durch Vielkern-Prozessoren er-heblich zu beschleunigen.

Hintergrund
Weil für Computersysteme immer höhere Rechenleistungen erforderlich sind, hat sich in der Vergangenheit die Anzahl der Transistoren in Pro-zessoren etwa alle 18 Monate verdoppelt. Gleichzeitig verdoppelte sich deren Arbeitsgeschwindigkeit. Da die technischen Grenzen erreicht sind, lässt sich die Geschwindigkeit einzelner Prozessoren kaum noch stei-gern. Daher stattet man Prozessoren mit mehreren Rechenkernen aus, die parallel arbeiten. Chips mit zwei bis 16 Rechenkernen sind inzwischen Stand der Technik. Jeder Rechenkern besitzt zudem eigene Zwischen-speicher (sogenannte Caches), die Programmcode und Daten innerhalb des Prozessors speichern, um kostspielige Hauptspeicherzugriffe zu vermeiden. Letztere sind ca. 100mal langsamer als prozessorinterne Zu-griffe, daher ist eine effiziente Nutzung der Zwischenspeicher für die Ent-wicklung moderner Rechentechnik essentiell.
Doch auch die Nutzung von Zwischenspeichern hat nicht nur positive Ef-fekte. Wenn ein Rechenkern Daten in seinem Zwischenspeicher verän-dert, muss er alle anderen Kerne, die ebenfalls eine Kopie dieser Daten enthalten, darüber informieren, dass ihre Kopie ungültig ist. Diese soge-nannte Cache-Kohärenz wird bisher automatisch durch die Hardware si-chergestellt. Sie ist verhältnismäßig aufwendig und steigt deutlich mit der Anzahl der Rechenkerne an. Da es bereits absehbar ist, dass Prozesso-ren mit mehreren hundert Rechenkernen auf den Markt kommen werden, ist es fraglich, ob sich der steigende Aufwand für die Cache-Kohärenz lohnt. Daher ist es notwendig zu untersuchen, inwiefern solche Vielkern-Prozessoren auch ohne implizite Konsistenz von Zwischenspeichern sinnvoll genutzt werden können. Derartige Systeme, die Eigenschaften verteilter Systeme und solcher mit einem gemeinsamen Speicher in sich vereinigen, erfordern Programmiermodelle und Betriebssystemplattfor-men, die dieser Rechner-Architektur entsprechen.

Weitere Informationen
Prof. Jörg Nolte, Lehrstuhl Verteilte Systeme/Betriebssysteme,
Tel: (0355) 69-3284, E-Mail: jon@informatik.tu-cottbus.de

Media Contact

Iris Mrosk idw

Weitere Informationen:

http://www.tu-cottbus.de

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ein 2D-Material, das immer breiter wird

Ein internationales Forschungsteam unter Leitung von Chemiker Prof. Thomas Heine von der TU Dresden hat ein neues Material mit wundersamen Eigenschaften entdeckt: Es handelt sich um einen zweidimensionalen Kristall, der…

Instrument an BESSY II zeigt, wie Licht MoS2-Dünnschichten katalytisch aktiviert

Dünnschichten aus Molybdän und Schwefel gehören zu einer Klasse von Materialien, die als (Photo)-Katalysatoren infrage kommen. Solche günstigen Katalysatoren werden gebraucht, um mit Sonnenenergie auch den Brennstoff Wasserstoff zu erzeugen….

Eine nahe, glühend heiße Super-Erde

Eine heiße Super-Erde in unserer Nachbarschaft ist vermutlich geeignet, um Atmosphärenmodelle von Gesteinsplaneten zu überprüfen. In den letzten zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein…

Partner & Förderer