Stromkreise besser verstehen

Unterrichtskonzept: Eine Batterie erzeugt einen elektrischen Druckunterschied (links), der bei Anschluss eines Lämpchens zu einem elektrischen Strom durch dieses führt (rechts). Grafik: Jan-Philipp Burde, Universität Tübingen

Neues Konzept für den Physik-Unterricht

Das Thema Elektrizität bereitet vielen Schülerinnen und Schülern im Physikunterricht Schwierigkeiten. Physikdidaktiker der Goethe-Universität und der Universität Tübingen haben ein neues, intuitives Lehrkonzept entwickelt und in einer großen Vergleichsstudie an Schulen getestet. Das Ergebnis: Nicht nur die Schülerinnen und Schüler verstanden elektrische Schaltkreise besser, auch die Lehrkräfte waren mit ihrem Unterricht zufriedener.

Ein Leben ohne Elektrizität ist heute kaum mehr vorstellbar. Egal ob Smartphone, Haartrockner oder die Deckenlampe – unsere liebgewonnenen technischen Errungenschaften benötigen Elektrizität. Zwar lernt jedes Kind in der Schule, dass Strom nur bei einem geschlossenen Stromkreis fließen kann, aber was ist eigentlich der Unterschied zwischen Strom und Spannung? Warum ist eine Steckdose lebensgefährlich, eine einfache Batterie hingegen nicht? Und warum wird eine an eine Mehrfachsteckdose angeschlossene Lampe nicht dunkler, wenn eine zweite Lampe an die Mehrfachsteckdose angeschlossen wird?

Die physikdidaktische Forschung hat gezeigt: Vielen Schülerinnen und Schülern gelingt es nach der 10. Jahrgangsstufe trotz intensiver unterrichtlicher Bemühungen ihrer Lehrkräfte oftmals nicht, grundlegende Fragen zu einfachen Stromkreisen zu beantworten. Vor diesem Hintergrund entwickelte Jan-Philipp Burde, inzwischen Juniorprofessor an der Universität Tübingen, im Rahmen seiner von Prof. Thomas Wilhelm betreuten Promotion an der Goethe-Universität ein innovatives Unterrichtskonzept zu einfachen Stromkreisen, das gezielt an die Alltagserfahrungen der Lernenden anknüpft.

Anders als bisherige Ansätze fokussiert das neue Unterrichtskonzept von Anfang an darauf, den Lernenden ein intuitives Verständnis für die elektrische Spannung zu vermitteln. Analog zum Luftdruckunterschied, der z.B. bei einer aufgeblasenen Luftmatratze die Ursache für das Ausströmen der Luft durch das Ventil ist, wird die elektrische Spannung als „elektrischer Druckunterschied“ eingeführt. Eine Vergleichsstudie mit 790 Schülerinnen und Schülern an Frankfurter Gymnasien zeigte, dass das neue Konzept zu einem deutlich besseren Verständnis elektrischer Stromkreise führt als der traditionelle Physikunterricht. Ferner gaben auch die Lehrkräfte an, das Konzept als wesentliche Verbesserung ihres Unterrichts wahrgenommen zu haben.

Die beiden Forscher aus Frankfurt und Tübingen haben nun eine ausführliche Beschreibung der dem Unterrichtskonzept zugrundeliegenden theoretischen Überlegungen in dem international höchst angesehenen Journal „Physical Review Physics Education Research“ im Rahmen der „Focused Collection: Theory into Design“ veröffentlicht. Für seine Dissertation erhielt Burde von der „Gesellschaft für Didaktik der Chemie und Physik“ den „GDCP-Nachwuchspreis“, der jährlich für die beste Dissertation oder Habilitation in der Chemie- und Physikdidaktik im deutschsprachigen Raum vergeben wird.

Zum Wintersemester 2019/20 wurde Burde auf eine von der Vector-Stiftung geförderte Juniorprofessur für Didaktik der Physik an die Universität Tübingen berufen. Aufbauend auf seinen Arbeiten hat sich ein grenzüberschreitendes Konsortium bestehend aus den Universitäten Tübingen, Frankfurt, Darmstadt, Dresden, Graz und Wien konstituiert mit dem Ziel, das Unterrichtsthema „einfache Stromkreise“ durch einen höheren Alltagsbezug interessanter und verständlicher zu gestalten. Um die oftmals beklagte Kluft zwischen Praxis und Forschung zu überwinden, richtete der Tübinger Forscher zudem die Internetseite www.einfache-elehre.de ein, auf der Lehrkräfte sich das Unterrichtskonzept kostenfrei herunterladen können.

Bilder zum Download:

http://www.uni-frankfurt.de/95652331
Bildtext: Unterrichtskonzept: Eine Batterie erzeugt einen elektrischen Druckunterschied (links), der bei Anschluss eines Lämpchens zu einem elektrischen Strom durch dieses führt (rechts). Grafik: Jan-Philipp Burde, Universität Tübingen

http://www.uni-frankfurt.de/95652319
Bildtext: Jun.-Prof. Dr. Jan-Philipp Burde, Universität Tübingen. Foto: Friedhelm Albrecht für Universität Tübingen

http://www.uni-frankfurt.de/95652342
Bildtext: Prof. Dr. Thomas Wilhelm, Goethe-Universität Frankfurt. Foto: Felix Richter

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Wilhelm
Geschäftsführender Direktor
Institut für Didaktik der Physik
Goethe-Universität Frankfurt
Tel.: +49 69 798-47845
wilhelm@physik.uni-frankfurt.de

Prof. Dr. Jan-Philipp Burde
Juniorprofessor
AG Didaktik der Physik
Universität Tübingen
Tel.: +49 7071 29 78651
jan-philipp.burde@uni-tuebingen.de

Originalpublikation:

Jan-Philipp Burde and Thomas Wilhelm (2020). Teaching electric circuits with a focus on potential differences. In: Phys. Rev. Phys. Educ. Res. 16, 020153, DOI: https://doi.org/10.1103/PhysRevPhysEducRes.16.020153
Jan-Philipp Burde (2018): Konzeption und Evaluation eines Unterrichtskonzepts zu einfachen Stromkreisen auf Basis des Elektronengasmodells. Studien zum Physik- und Chemielernen, Band 259, Logos-Verlag, Berlin, ISBN: 978-3-8325-4726-4, http://doi.org/10.30819/4726

http://www.uni-frankfurt.de

Media Contact

Dr. Markus Bernards Public Relations und Kommunikation
Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Älteste Karbonate im Sonnensystem

Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde. Ein 2019 in Norddeutschland niedergegangener Meteorit enthält Karbonate, die zu den ältesten im Sonnensystem überhaupt zählen und zugleich einen Nachweis der…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen