Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detailinformationen aus der Tiefe in Sekundenschnelle

21.12.2010
Aufgrund der weltweit wachsenden Produktion steigt der Bedarf an mineralischen Rohstoffen. Eine effiziente Nutzung der Ressourcen gewinnt im Hinblick auf den großen Nachfrageüberhang immer mehr an Bedeutung. Bei den derzeit verwendeten Abbautechniken mineralischer Rohstoffe kann die optimale Ausnutzung der Lagerstätten nicht immer gewährleistet werden. Dies bedeutet einen erhöhten Zeit- und Kostenaufwand. Bergbaubetreiber fordern daher eine verlässliche und schnelle Analysemethode von Abbaugebieten. Das Fraunhofer-Institut für Lasertechnik ILT hat nun ein bergbautaugliches Laseranalysesystem zur Gesteinserkennung in Echtzeit entwickelt.

Häufig verwendete Abbautechniken mineralischer Rohstoffe sind Bohren, Sprengen und die schneidende Gewinnung. Um abschätzen zu können, wo sich die Erschließung eines Abbaugebietes lohnt, benötigt der Steinbruchbetreiber ein genaues Lagerstättenmodell. Dieses zeigt ihm, an welcher Stelle, in welcher Tiefe und in welcher Konzentration sich das gewünschte Nutzgestein befindet. Ein unergiebiger Abbau und die Gewinnung wertlosen Nebengesteins kann so vermieden werden. Der Steinbruchbetreiber spart Zeit und Kosten für die Aufbereitung des Rohstoffs.


Der Laseranalysator im Einsatz auf einem Bohrgerät. Bildquelle: Institut für Maschinentechnik der Rohstoffindustrie der RWTH Aachen.

Derzeit werden die benötigten Informationen aus der Tiefe mit Kernbohrungen gewonnen. Dabei wird dem Boden ein Bohrkern entnommen, der zur Analyse in ein Labor geschickt wird. Per Röntgenfluoreszenzanalyse (RFA) wird schließlich die Zusammensetzung des ausgebohrten Gesteins bestimmt. Erst nach drei bis fünf Tagen erhält der Bergbaubetreiber die gewünschten Daten, welche die Basis für ein detailliertes Lagerstättenmodell bilden. Diese Methode entspricht dem aktuellen Stand der Technik.

Da die Bohrkernentnahme zeitlich aufwändig ist, fordern Bergbaubetreiber eine schnellere Analysemethode mit ausreichend hohem Detaillierungsgrad. Im Rahmen des BMWi-geförderten InnoNet-Projekts OFUR – Online Analyse für die Gewinnung mineralischer Rohstoffe – haben Forscher des Fraunhofer ILT in Zusammenarbeit mit dem Institut für Maschinentechnik der Rohstoffindustrie der RWTH Aachen und sieben Industriepartnern einen robusten Demonstrator mit einem Inline-Analysemodul zum Einsatz im Bergbau entwickelt. Dieses analysiert das durchbohrte Gestein direkt. Mit Hilfe eines konventionellen Bohrgerätes, ausgestattet mit dem Analyse-Modul, wird ein bis zu 24 Meter tiefes Loch mit einem Durchmesser von rund 10 Zentimetern in das Gestein gebohrt. Bereits während des Bohrvorgangs misst das System die chemische Gesteinszusammensetzung und stellt die ausgewerteten Daten sofort zur Verfügung. »Die Herausforderung des Projekts bestand darin, die Lasersensorik auf die Betriebsbedingungen im Bergbau zu übertragen«, so Dr. Cord Fricke-Begemann, zuständig für den Bereich Materialanalytik am Fraunhofer ILT. »Wir haben daher eine Messanordnung entwickelt, die mit extremen Temperaturschwankungen, starken Erschütterungen, hoher Feuchtigkeit und Staub zurechtkommt.«

Echtzeitfähige Multi-Element-Analyse

Als Analysemethode wird die Laser-Emissionsspektroskopie (engl. LIBS = Laser-Induced Breakdown Spectroscopy) eingesetzt. Der Staub wird durch einen Schlauch an die Oberfläche gesaugt und in einem Zyklon nach Korngrößen getrennt. Das erzeugte Staub-Luft-Gemisch passiert den Schlauch mit einer Geschwindigkeit von bis zu 20 Metern pro Sekunde. Währenddessen findet der eigentliche Analysevorgang statt, der nicht mehr als 20 Mikrosekunden beansprucht. Dabei wird ein Laserpuls hoher Bestrahlungsstärke auf die vorbeiströmenden Staubkörner fokussiert. Die Partikel verdampfen und durch das weitere Aufheizen des Dampfes entsteht ein Plasma. Dieses sendet kurzzeitig eine für die darin enthaltenen Elemente spezifische Strahlung aus. Über das Spektrometer wird das emittierte Licht aller Elemente gleichzeitig detektiert. Die Daten werden an einen Computer weitergeleitet und ausgewertet. Bei der Analyse trifft der Laserpuls auf Staubpartikel unterschiedlicher Zusammensetzung. Die Einzeldaten werden in kurzen Zeitintervallen gemittelt und liefern so eine aussagekräftige Information über die Gesteinszusammensetzung. Die zeitliche Abfolge der Daten gibt Aufschluss über die Schichtenfolge in der Lagerstätte.

Der entscheidende Vorteil dieser Methode besteht im großen Zeitgewinn. Bereits nach wenigen Sekunden liegen die ausgewerteten Messdaten vor. Der Steinbruchbetreiber kann so unmittelbar Aussagen zur vorliegenden Qualität treffen und den Gewinnungsprozess daran anpassen. Bislang wurden auf diese Weise bereits die Elemente Magnesium, Kalzium, Silizium, Eisen und Aluminium bestimmt. Die Aachener Forscher haben es sich zum Ziel gesetzt, mit Hilfe eines anderen Spektrometers bald auch Kupfer und weitere Metalle zu ermitteln.

Das echtzeitfähige Multi-Element-Analyseverfahren soll langfristig zur automatischen Steuerung für Gewinnungsmaschinen genutzt werden. Hierzu hat die Gruppe Materialanalytik mit den Partnern ein Konzept entwickelt, wie das System untertägig an Walzenladern eingesetzt werden kann. Übertägig soll der Demonstrator an Bohrgeräten für die Gewinnung mineralischer Rohstoffe zum Einsatz kommen. Die Inline-Analyse ermöglicht hier eine permanente Qualitätskontrolle und Aktualisierung des Lagerstättenmodells. Das bereits begonnene Nachfolgeprojekt hat sich zum Ziel gesetzt, das Analysesystem industrietauglich zu machen. Der industrielle Einsatz einer Bohrmaschine mit Laseranalysegerät würde für die beteiligten mittelständischen Unternehmen einen Alleinstellungsfaktor bedeuten und für sie neue Absatzpotenziale eröffnen.


Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dr. rer. nat. Cord Fricke-Begemann
Materialanalytik
Telefon +49 241 8906-196
cord.fricke-begemann@ilt.fraunhofer.de
Dr. rer. nat. Reinhard Noll
Lasermesstechnik
Telefon +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten
18.07.2018 | BIAS - Bremer Institut für angewandte Strahltechnik GmbH

nachricht Neues Verfahren verbessert Haltbarkeit der Beschichtung auf Werkzeugen
12.07.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics