Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020

Astrobiologen beweisen, dass bestimmte Mikroben unter Bedingungen wie auf dem Roten Planeten überleben können

Als der NASA Marsrover „Curiosity“ im Juni 2018 organische Moleküle auf dem Mars fand, war die Fachwelt begeistert. Es bedeutete, dass Leben auf dem Roten Planeten irgendwann einmal existiert haben könnte oder auch jetzt noch möglich sein könnte.


Vor Kurzem ergaben neuere Messungen der „Curiosity“, dass auch die Konzentrationen des Stoffwechselproduktes Methan über das Jahr schwanken. Wer oder was produziert also sporadisch das Methan?

Erstmals konnte nun die Arbeitsgruppe des Astrobiologen Prof. Dr. Dirk Schulze-Makuch vom Zentrum für Astronomie und Astrophysik der TU Berlin im Experiment nachweisen, dass bestimmte Mikroben (Archaeen) in marsähnlichen, salzhaltigen Böden nicht nur überleben, sondern auch Stoffwechsel betreiben können – nur mit Kohlendioxid und Wasserstoff als Energie- und Kraftstoffquellen – und nur mit den minimalen Wassermengen, die das salzhaltige Gestein der Atmosphäre entzieht.

Das Methan könnte also von ihnen stammen – eine weitere wichtige Einsicht auf der Suche nach Leben auf dem Mars. Ihre Ergebnisse veröffentlichten die Wissenschaftler*innen in der neuesten Ausgabe der Springer Nature Scientific Reports.

„Die niedrige Durchschnittstemperatur und Wasseraktivität an der Oberfläche des Mars machen es lebenden Organismen nicht leicht, in dieser Umgebung zu bestehen oder gar sich fortzupflanzen“, so Dirk Schulze-Makuch. „Doch die Ergebnisse jüngerer Marsmissionen zeigen, dass die Umweltbedingungen zu bestimmten Zeiten und an bestimmten Orten des Roten Planeten durchaus die unteren Grenzen überschreiten, die Leben möglich machen.“

Unter dem Projektnamen HOME (Habitability of Martian Environments) beschäftigt sich die Arbeitsgruppe des Astrobiologen und Geowissenschaftlers, der außerdem Adjunct Professor an der Arizona State sowie der Washington State University sowie Präsident der Deutschen Astrobiologischen Gesellschaft e. V. ist, bereits seit mehreren Jahren mit der Bewohnbarkeit potenzieller Lebensräume auf dem Mars.

Schon 2018 konnte seine Arbeitsgruppe durch aufwendige Untersuchungen in der marsähnlichen Atacama-Wüste, einem der trockensten Orte der Erde, nachweisen, dass aktive Zellverbände in dieser lebensfeindlichen Umgebung so lange überleben können, bis sie durch minimale Wassermengen wieder aktiviert werden.

Morgenfrost und Fließspuren

An der Marsoberfläche erlauben die Bedingungen das dauerhafte Vorhandensein von flüssigem Wasser nicht, doch es sei möglich, so Schulze-Makuch, dass an einigen Stellen in Oberflächennähe hygroskopische Salze existieren, die der Umgebung Feuchtigkeit entziehen, zum Beispiel Morgenfröste, und dass sich das Salz von fest zu flüssig wandelt. Das wurde auch von anderen Forschern bereits angenommen, zum Beispiel für die dunklen Streifen, die sporadisch an den steilen Wänden einiger Mars-Krater auftreten und für Fließspuren gehalten werden („Recurring Slope Lineae“ RSL). Aus diesen Salzen könnten auch unterirdische, oberflächennah lebende Organismen ihren Wasserbedarf stillen, so die Vermutung.

In einem geschlossenen marsanalogen System betreiben Mikroben Stoffwechsel

Um solche Hypothesen zu überprüfen führt diese Forschung Wissenschaftler immer wieder in sehr abgelegene Regionen, deren Umweltbedingungen denen auf dem Mars sehr ähnlich sind, beispielsweise in die Atacama-Wüste in Chile, die McMurdo Dry Valleys in der Antarktis oder die Larsemann Hills im Osten der Antarktis.

„Die Untersuchung dieser marsanalogen Umgebungen und der dort vorhandenen Mikrobiota helfen, die Bewohnbarkeit von marsianischen Umgebungen zu bewerten“, so Dirk Schulze-Makuch. Diese Gebiete sind extrem trocken (arid), aber gleichzeitig salzhaltig. Sie sind von Mikrobengemeinschaften besiedelt, die sich ihrer Umgebung so angepasst haben, dass sie beginnen, Stoffwechsel zu betreiben, sobald sie durch Deliqueszenz befeuchtet werden.

Deliqueszenz ist das spezifische Vermögen bestimmter Stoffe, meist Salze, die relative Feuchte ihrer Umgebung zu beeinflussen. Um zu testen, ob die von der „Curiosity“ auf dem Mars gemessenen schwankenden Methankonzentrationen von oberflächennah lebenden Mikroben stammen könnten, entwickelten die Forscher*innen ein geschlossenes Deliqueszenz-System mit in diesen marsähnlichen Gegenden vorhandenen ausgetrockneten marsanalogen Substraten (Mars Regolith Analogues – MRA), hygroskopischen Salzen und drei methanogenen Archaeen (die Mikrobenstämme Methanosarcina mazei, M. barkeri und M. soligelidi).

Anschließend konnten sie messen, unter welchen Bedingungen die verschiedenen Mikroben zu Stoffwechselaktivitäten angeregt wurden. Das Ergebnis: Zwei von drei bakterienähnlichen Organismen haben reagiert, jeweils in verschiedenen Substraten und bei verschiedenen Temperaturen. Das ließ die Fachwelt aufhorchen, denn bis heute wurden die Modellorganismen (inklusive methanproduzierende Mikroben) vor allem Stressfaktoren wie Austrocknung, Dürre, Hunger, Gefrier- und Auftauzyklen, hohem Salzgehalt, niedrigem Atmosphärendruck und erhöhten Strahlendosen ausgesetzt, um die Bewohnbarkeit des Mars zu bewerten.

„Nach unserer Kenntnis gibt es jedoch keine Studie, die belegt, dass methanogene Archaeen in einer oberflächennahen Umgebung existieren können, in der Wasser nur durch Deliqueszenz verfügbar gemacht werden kann“, so Schulze-Makuch. „Wir konnten hier zum ersten Mal zeigen, dass allein das durch die Deliqueszenz bereitgestellte Wasser ausreicht, um methanogene Archaeen unter diesen extremen Bedingungen erneut zu hydrieren, quasi wieder zum Leben zu erwecken, und deren Stoffwechsel in einer Umgebung zu reaktivieren, wie sie nahe unter der Oberfläche des Mars existiert.

Deborah Maus, Jacob Heinz, Janosch Schirmack, Alessandro Airo, Samuel P. Kounaves, Dirk Wagner, Dirk Schulze-Makuch: „Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments“

Die Originalpublikation finden Sie unter: https://www.nature.com/articles/s41598-019-56267-4


Weitere Artikel zum Thema: www.airspacemag.com/author/dirk-schulze-makuch/ 

Fotomaterial zum Download
www.tu-berlin.de/?211135


Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Dirk Schulze-Makuch
Technische Universität Berlin
Zentrum für Astronomie und Astrophysik der TU Berlin
Planetarische Habitabilität and Astrobiologie

Tel.: 300/314-23736
Email: schulze-makuch@tu-berlin.de

Weitere Informationen:

https://www.nature.com/articles/s41598-019-56267-4
http://www.airspacemag.com/author/dirk-schulze-makuch/
http://www.tu-berlin.de/?211135

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“
12.02.2020 | Technische Universität Chemnitz

nachricht 4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart
10.02.2020 | Haus der Technik e.V.

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics