Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungewöhnliche Symmetrie: Physiker kontrollieren Elektronen mit ultraschnellen Laserpulsen

12.02.2019

Symmetrien sind in der Natur allgegenwärtig – etwa die Spiegelsymmetrie der Hände oder die sechszählige Symmetrie einer Schneeflocke. Oldenburger Physikern ist es erstmals gelungen, in Experimenten gezielt Elektronenwellen zu erzeugen, die eine in der Natur seltene siebenzählige Symmetrie aufweisen. Der konkrete Vorgang heißt Photoionisation. Dabei wird ein Elektron mit Hilfe von Licht aus einem Atom oder Molekül gelöst, ähnlich wie der erste Schritt der Stromerzeugung in Solarzellen. Die Ergebnisse sind online im Fachmagazin Nature Communications erschienen. Sie könnten dazu beitragen, neuartige und ultraschnell steuerbare Elektronenquellen mit ungewöhnlichen Eigenschaften bereitzustellen.

Bereits vor gut zwei Jahren konnten die Oldenburger Experimentalphysiker zeigen, dass sie mit Hilfe extrem kurzer Laserpulse die Ladungstrennung, also das Herauslösen eines Elektrons aus einem Atom, für die Erzeugung von Elektronenwirbeln nutzen können. „Nun sind wir noch einen Schritt weiter“, sagt Prof. Dr. Matthias Wollenhaupt, Leiter der Arbeitsgruppe Ultraschnelle Kohärente Dynamik (ULTRA).


Tomographische Rekonstruktion der Aufenthaltswahrscheinlichkeit der ausgesendeten Photoelektronen bei unterschiedlichen Laserpulsformen, die durch Überlagerung zweier Laserpulse entstehen.

Matthias Wollenhaupt/ Universität Oldenburg

„Unsere Experimente zeigen, dass es mit Hilfe modernster Lasertechniken gelingt, die Eigenschaften der bei der Photoionisation ausgesendeten Elektronen hochpräzise zu kontrollieren. Elektronenwellen mit siebenzähliger Symmetrie hat bisher noch niemand im Experiment beobachtet.“

Der Schlüssel hierzu sind maßgeschneiderte Laserblitze von der Dauer einiger Femtosekunden, also billiardstel Sekunden. Zum Vergleich: In drei Sekunden – also der Zeitspanne, die der Mensch als einen zusammenhängenden Moment wahrnimmt – vergehen etwa so viele Femtosekunden, wie Minuten seit Bestehen des Universums vergangen sind.

Dank neuartiger experimenteller Techniken können Forscher solche Laserblitze, auch Pulse genannt, in Raum und Zeit gezielt manipulieren: Durch Überlagerung zweier Laserpulse verschiedener Farbe sind die Oldenburger Physiker in der Lage, in ihrem Experiment nahezu beliebige gerad- oder ungeradzahlige Symmetrien des Strahlungsfeldes zu herzustellen. Auf diese Weise erzeugten sie beispielsweise nach Belieben abstimmbare propellerförmige oder herzförmige Laserpulsformen.

Den Forschern ist es nun erstmals gelungen, diese ungewöhnlichen Symmetrieeigenschaften der Laserpulse gezielt auf Elektronenwellen zu übertragen. Dafür bestrahlten sie ein Ensemble von Natrium-Atomen mit speziell eingestellten Laserfeldern. Natrium-Atome sind dank ihres Aufbaus für solche Experimente besonders geeignet, denn sie besitzen nur ein einziges Elektron in ihrer äußeren Hülle.

„Die Ergebnisse offenbaren ein überraschendes Wechselspiel zwischen den Symmetrien des Laserfeldes und den beobachteten Eigenschaften der Elektronenwellen“, sagt Stefanie Kerbstadt, die ebenfalls an der Arbeit beteiligt war. Neben der siebenzähligen Symmetrie der Elektronen konnten die Physiker dabei die Photoelektronen auch halbmondförmig lokalisieren oder zu einem Wirbel formen.

Diese ultraschnelle Prozesse beobachteten die Forscher mit einer tomographische Methode, die sie selbst entwickelt haben: Ähnlich wie in der medizinischen Computertomographie entstehen dabei dreidimensionale Bilder, die das komplexe Geschehen der Ladungstrennung sichtbar machen. Dabei messen die Physiker die sogenannten Aufenthaltswahrscheinlichkeiten der Elektronen, also wie sich die Elektronen in Millionen von Beobachtungen verhalten.

„Mit unseren Experimenten wollen wir grundlegend verstehen, wie man mit zeitlich strukturierten, sogenannten polarisationsgeformten, Laserpulsen die Wechselwirkung von Licht und Materie im Innersten kontrollieren kann“, sagt Experimentalphysiker Wollenhaupt.

Zwar seien natürliche Prozesse, etwa die Wechselwirkung des Lichts mit großen Molekülen, deutlich komplexer als die Photoionisation von Atomen unter Laborbedingungen. Der zugrundeliegende physikalische Mechanismus sei dennoch auf andere Bereiche der Physik übertragbar, betont er.

Ladungsträger kontrolliert auszusenden könnte beispielsweise helfen, elektrische Ströme ultraschnell zu schalten und zu steuern oder neuartige Elektronenquellen für die Grundlagenforschung zu entwickeln. Ziel der Oldenburger Physiker ist zudem, die Erzeugung von noch kürzeren Laserpulsen im Bereich von Attosekunden, also einer tausendstel Femtosekunde, mit diesen neuartigen Laserpulsen zu kontrollieren.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Matthias Wollenhaupt, Institut für Physik
Tel.: +49 (0)441 798-3572
E-Mail: matthias.wollenhaupt@uol.de

Originalpublikation:

S. Kerbstadt, K. Eickhoff, T. Bayer & M. Wollenhaupt (2019): Odd electron wave packets from cycloidal ultrashort laser fields. Nature Communications 10, 658. DOI: 10.1038/s41467-019-08601-7

Weitere Informationen:

http://uol.de/physik/
http://dx.doi.org/10.1038/s41467-019-08601-7

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-oldenburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics