Schwarze Löcher sind womöglich kleiner als gedacht

Skizze einer flachen Akkretionsscheibe, die um ein Schwarzes Loch herumwirbelt. Quelle: NASA/Dana Berry, SkyWorks Digital<br>

Schwarze Löcher sind womöglich bis zu zehn Mal kleiner als bislang angenommen. Zu diesem Schluss kommen Astrophysiker der Universität Göttingen in einer Studie, die am Donnerstag, 17. Februar 2011, in der renommierten Fachzeitschrift Nature erscheint.

Supermassereiche Schwarze Löcher stehen in den Zentren von Galaxien und haben eine Masse von bis zu einer Milliarde Sonnenmassen. Sie sind umgeben von einer sogenannten Akkretionsscheibe, in der sich die zentrale Materie der Galaxie ansammelt. Materie am Innenrand der Scheibe stürzt aufgrund der hohen Anziehungskraft des Schwarzen Lochs mit sehr großer Geschwindigkeit in dieses hinein.

Die Forscher analysierten die Lichtemissionen von insgesamt 37 Galaxien und konnten dabei erstmals eindeutig die Umlaufgeschwindigkeit der Scheibenmaterie messen. Mit dem dritten Keplerschen Gesetz lässt sich anhand der Umlaufgeschwindigkeit und dem Abstand der Körper voneinander die Masse des Schwarzen Lochs berechnen. Die daraus berechneten Massen sind weit geringer als bisher angenommen, und da die Masse von Schwarzen Löchern proportional zu ihrer Größe ist, sind diese damit auch kleiner als vermutet.

Die Wissenschaftler registrierten Rotationsgeschwindigkeiten zwischen einigen hundert und einigen tausend Kilometern pro Sekunde. Nach Innen, also in Richtung des Schwarzen Lochs, nimmt die Geschwindigkeit zu – analog dazu bewegen sich in unserem Sonnensystem die inneren Planeten schneller als die äußeren. Darüber hinaus konnten die Göttinger Astrophysiker erstmals Aussagen über die Geometrie der Materiewolken in der Umgebung eines Schwarzen Lochs machen: Bei hohen Rotationsgeschwindigkeiten ist die umgebende Materie in Form einer flachen Scheibe angeordnet, bei langsam rotierenden Schwarzen Löchern in Form einer dicken Scheibe.

Originalveröffentlichung: Wolfram Kollatschny, Matthias Zetzl. Broad-line active galactic nuclei rotate faster than narrow-line ones. Nature. DOI: 10.1038/nature09761.

Kontaktadresse:
Prof. Dr. Wolfram Kollatschny
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Astrophysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-5065, Fax (0551) 39-5043
E-Mail: wkollat@astro.physik.uni-goettingen.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer