Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Technik zum Abbilden und Manipulieren kleinster Magnete

29.08.2012
Wird ein hohes elektrisches Feld an eine scharfe Magnetnadel angelegt, so lösen sich Elektronen heraus, die einen Stromfluss erzeugen.
Forschern der Universität Hamburg gelang es nun erstmals, diesen physikalischen Effekt der sogenannten "Feldemission" zum Abbilden und Manipulieren kleinster Magnete zu nutzen, wie die aktuelle Ausgabe der renommierten Fachzeitschrift "Physical Review Letters" berichtet.

Hierfür positionierten die Wissenschaftler um Prof. Roland Wiesendanger in ihrem sogenannten „Spin-polarisierten Rasterfeldemissionsmikroskop“ bei -230° Celsius eine Magnetnadel über einen Magneten, der nur aus 50 Eisenatomen besteht. Durch das Anlegen eines elektrischen Feldes lösen sich Elektronen aus der Nadelspitze, werden zum Magneten hin beschleunigt und dringen schließlich in diesen ein. Die Hamburger Forscher konnten so nicht nur seine Magnetisierung auslesen, sondern auch gezielt hin- und herschalten. Der Abstand zwischen der Nadelspitze und dem Magneten beträgt dabei einige Nanometer, was typischen Schreib-Lesekopf-Abständen in heutigen Festplatten entspricht.

a) Eisen-Nanomagnete (entsprechend ihrer Magnetisierung grün und rot eingefärbt) b) Zur Manipulation wird eine magnetische Nadelspitze über den Nanomagneten positioniert und dieser mit spin-polarisierten feld-emittierten Elektronen beschossen. Das nach der Manipulation aufgenommene Bild zeigt in der Tat, dass der Nanomagnet seine Magnetisierung umgekehrt hat, d.h. von "grün" nach "rot" geschaltet hat.

A. Schlenhoff, Universität Hamburg

Damit erfüllen die Hamburger Experimente die grundlegenden Voraussetzungen für eine Schreib-Lese-Technik, wie sie in einer neuartigen Speichertechnologie mit ultrahoher Datendichte zum Einsatz kommen könnte: Der konventionelle Schreib-Lesekopf würde hierbei durch eine einfache magnetische Nadel ersetzt werden, und digitale Daten würden durch die beschriebene „Feldemission“ ausgelesen und geschrieben. Hierdurch könnte eine gegenüber aktuellen Systemen zehntausendfach höhere Datenkapazität erzielt werden.

Die neuartige Schreib-Lese-Technik basiert dabei auf den mikroskopischen Wechselwirkungsprozessen zwischen dem Magneten und den aus der Nadel gelösten Elektronen: bei niedrigem Emissionsstrom wird der Zustand des Magneten über Leitfähigkeitsmessungen ausgelesen, und bei hohem Emissionsstrom zwingen die Elektronen mit ihrem Eigendrehimpuls (dem sogenannten „Spin“) den Nanomagneten gezielt seine Magnetisierungsrichtung umzukehren. „Durch den lokalen Elektronenbeschuss heizt sich der Nanomagnet zudem beträchtlich auf, was seine Manipulation deutlich erleichtert“, erläutert Dipl.-Physikerin Anika Schlenhoff. Obwohl die Feldemission seit langem routinemäßig in mikroskopischen Abbildungs- und Untersuchungsmethoden zum Einsatz kommt, erlauben erst die neuesten Experimente einen detaillierten Einblick in die Wechselwirkungsprozesse eines Feldemissionsstromes mit einem Magneten auf atomarer Skala.

Weitere Informationen:

Heiko Fuchs
Fachbereich Physik
Universität Hamburg
Jungiusstr. 9a
20355 Hamburg

Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Weitere Informationen:
http://www.nanoscience.de/
http://www.sfb668.de/
http://www.nanoscience.de/lexi

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker der Universität Rostock schaffen erstmals Licht, das sich wie exotische Elementarteilchen verhält
10.12.2019 | Universität Rostock

nachricht Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten
09.12.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungsnachrichten

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics