Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Klang der Saturnringe: RUB-Physiker erklären nichtlineare Schallwellen in staubigen Plasmen

16.10.2012
Bengt Eliasson zum Mitglied der Americal Physical Society gewählt

Staubige Plasmen sind zahlreich im Weltall und im Labor. Sie kommen unter anderem in den Saturnringen vor. Aufgrund ihrer speziellen Eigenschaften können sich in ihnen spontan Schallwellen ausbreiten, so wie in der Luft.

Die RUB-Physiker Prof. Dr. Dr. h.c. Padma Kant Shukla und Dr. Bengt Eliasson haben ein Modell publiziert, das erklärt, wie nichtlineare Schallwellen in staubigen Plasmen entstehen. Die Forscher der Fakultät für Physik und Astronomie berichten in der Zeitschrift Physical Review E.

Unterschiedliche akustische Phänomene in staubigen Plasmen

Staubige Plasmen bestehen üblicherweise aus Elektronen, positiv geladenen Ionen, neutralen Atomen und Staubkörnchen, die negativ oder positiv geladen sind. Nur in Plasmen mit solchen Staubkörnern können Schallwellen entstehen – die sogenannten Staub-Schallwellen. Die Trägheit der massereichen Staubkörner ist für ihre Entstehung entscheidend. Der Druck der heißen Elektronen und Ionen des Plasmas liefert die Rückstellkraft, die die Plasmateilchen in Schwingungen versetzt und dafür sorgt, dass sich die Schallwelle ausbreitet. Zahlreiche Experimente offenbarten kürzlich nichtlineare akustische Wellen mit extrem großen Amplituden in staubigen Plasmen, nämlich einzelne akustische Pulse und Schockwellen. Padma Shukla und Bengt Eliasson haben jetzt eine Theorie entwickelt, die beschreibt, unter welchen Umständen nichtlineare Schockwellen und Pulse in staubigen Plasmen auftreten.

Mit sich selbst interagierende Schallwellen

Staub-Schallwellen mit großen Amplituden interagieren miteinander. Dabei entstehen neue Wellen mit neuen Frequenzen. Durch die Entstehung von Harmonischen (also Wellen mit Frequenzen, die ein ganzzahliges Vielfaches der Ausgangsfrequenz sind) und durch konstruktive Interferenz können sich die Wellen zu einzelnen Pulsen („Spikes“) entwickeln oder zu Schockwellen. Die Einzelpulse treten auf, wenn Nichtlinearitäten bei der Entstehung der Harmonischen mit der Zerstreuung der Welle im Lauf der Zeit zusammenspielen. Schockwellen bilden sich hingegen, wenn die Zähflüssigkeit des Staubs stärker ist als die Zerstreuung der Welle. Das passiert bei hohen Staubdichten, wenn die Staubpartikel so nah zusammenkommen, dass sie interagieren und mit Nachbarpartikeln kollidieren.

Theorie erklärt experimentelle Daten

Die neue Shukla-Eliasson-Theorie erklärt die Beobachtungen aus Experimenten von drei verschiedenen Arbeitsgruppen in den Vereinigten Staaten (Robert Merlino), Taiwan (Lin I) und Indien (Predhiman Kaw). Die Forscher hatten die Existenz von Einzelpulsen und Schockwellen mit großen Amplituden bei Entladungen von Tieftemperaturplasmen beschrieben. Mit dem neuen Modell lässt sich aus der Weite der Schockwelle die Zähflüssigkeit des Staubes bestimmen. „Unsere Ergebnisse sind auch wichtig, um den möglichen Mechanismus zu verstehen, der der Clusterbildung von Staubkörnern in Planeten und Regionen sich bildender Sterne zugrunde liegt“, erklärt Prof. Padma Shukla.

Existenz von Schallwellen in staubigen Plasmen vor mehr als zwei Jahrzehnten vorhergesagt

Vor über zwei Jahrzehnten sagte Prof. Shukla theoretisch lineare und nichtlineare Schallwellen in staubigen Plasmen voraus. Viele Laborexperimente haben die Theorie seither bestätigt. Die Entdeckung der Schallwellen hat die Plasmaphysik verändert und ein neues interdisziplinäres Forschungsfeld zum Vorschein gebracht an der Schnittstelle zwischen Astrophysik und der Physik der kondensierten Materie.

APS-Mitgliedschaft für die Beiträge zu „computational physics“ und zur nichtlinearen Plasmaphysik

Für seine entscheidenden Beiträge zur nichtlinearen Plasmaphysik und zu „computational physics” wurde Dr. Bengt Eliasson im September 2012 zum Mitglied der American Physical Society (APS) gewählt –eine große Auszeichnung durch die Forscherkollegen. Die APS nimmt jährlich weniger als ein Prozent neue Mitglieder auf, bezogen auf die aktuelle Mitgliederzahl. Bengt Eliasson erlangte einen Masterabschluss in Engineering Physics an der Universität in Uppsala, Schweden, wo er sich auch in Numerischer Analysis promovierte. Seit 2003 arbeitet er an der Ruhr-Universität Bochum in Prof. Shuklas Labor. Seine Beiträge zu verschiedenen Bereichen der Astro- und Plasmaphysik reichen von Simulationen der Erd-Ionosphäre im großen Maßstab bis hin zu numerischen Modellen von Quantenplasmen. Die Ergebnisse seiner Forschungsprojekte veröffentlichte Eliasson in etwa 150 wissenschaftlichen Artikeln. Er wurde unter anderem zu Vorträgen zur European Geophyiscal Union, European Physical Society, American Physical Society sowie zum International Congress of Plasma Physics eingeladen.

Titelaufnahme

P. K. Shukla, B. Eliasson (2012): Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas, Physical Review E, doi: 10.1103/PhysRevE.86.046402

Weitere Informationen

Prof. Dr. Dr. h.c. Padma Kant Shukla, RUB International Chair, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23759
ps@tp4.rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics