Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kernoberfläche beeinflusst Neutronenbindung

17.05.2019

Team um Physiker der TU Darmstadt präzisiert Kernmodell durch Radienmessung

Präzise laserspektroskopische Messungen erlauben es, die Größe von Atomkernen auch für sehr kurzlebige Isotope zu bestimmen. Physikern der TU Darmstadt und ihren internationalen Kollegen gelang es erstmals, diese Technik über das „doppelt magische“ Zinn-Isotop 132Sn hinaus anzuwenden. Sie fanden eine abrupte Zunahme des Radius. Die Daten legen nahe, dass der Einfluss der Kernoberfläche auf die Bindung der Neutronen und Protonen größer ist als bislang angenommen. Die Zeitschrift „Physical Review Letters“ hob die Arbeit als „Editors’ Suggestion“ besonders hervor.


Kein anderes Element besitzt so viele stabile Isotope wie Zinn, weil dies ein Element mit einer „magischen“ Protonenzahl ist, das heißt, alle mit Protonen besetzten Kernschalen sind komplett gefüllt und somit abgeschlossen.

Das führt zu einer besonderen Stabilität. Während die Zahl der Protonen für alle Isotope eines Elementes konstant ist – bei Zinn sind es 50 – kann die Zahl der Neutronen im Kern variieren.

Wenn zusätzlich zu den Protonenschalen auch noch die Neutronenschalen voll besetzt sind, spricht man von „doppelt magischen Kernen“. Zinn ist das schwerste Element, das zwei doppelt magische Isotope besitzt: Zinn-100 (50 Neutronen) und Zinn-132 (82 Neutronen).

Beide sind aber sehr kurzlebig und kommen nicht natürlich vor, weshalb sie für die Experimente an einer Beschleunigeranlage künstlich erzeugt und innerhalb ihrer Lebensdauer von nur wenigen Sekunden untersucht werden müssen.

Ein Schalenabschluss ist dadurch gekennzeichnet, dass die Bindungsenergie der äußersten Neutronen entlang einer Isotopenkette jenseits der magischen Neutronenzahl abrupt abfällt. Für den Ladungsradius des Kerns, also der Kerngröße, erwartet man den umgekehrten Fall – einen plötzlichen Anstieg.

Festzustellen, ob dieser „Knick im Trend“ bei den Ladungsradien entlang der Zinn-Isotopenkette existiert, war das Ziel des Experimentes. Die internationale COLLAPS-Kollaboration, an der Physiker der TU Darmstadt und des Max-Planck-Institutes für Kernphysik in Heidelberg maßgeblich beteiligt sind, nutzte die Isotopenfabrik ISOLDE am CERN, um die kurzlebigen Kerne zu produzieren.

Erstmals konnten sie dabei die Ladungsradien bis zum Isotop Zinn-134 bestimmen und damit den Verlauf der Ladungsradien am Schalenabschluss bei Zinn-132 etablieren. Oberhalb von Zinn-132 nimmt der Radius deutlich schneller zu als unterhalb – die Kurve, die diesen Trend grafisch darstellt, macht einen scharfen Knick.

Dies ist ein weiteres Indiz für den doppelt magischen Charakter des Isotops. Ein ähnliches Verhalten wurde früher auch schon für das ebenfalls doppelt magische Isotop Blei-208 beobachtet. Der Mechanismus, der für den „Knick“ in den Radien verantwortlich ist, ist jedoch ein anderer als für den ähnlichen Trend bei den Bindungsenergien. Darum liefern die neuen Messungen der Radien wichtige Information über die Kernstruktur.

Beteiligten theoretischen Kernphysikern von der Universität Erlangen-Nürnberg und der Michigan State University gelang es, die treibende Kraft hinter der sprunghaften Zunahme der Radien nach Zinn-132 zu identifizieren: eine verstärkte Bindung von Neutronenpaaren an der Kernoberfläche.

Dies ist eine neue Ausprägung des gleichen Effektes, durch den auch schon die Isotopenketten von Calcium, Eisen und Cadmium erfolgreich beschrieben werden konnten. Erst die neuen Informationen aus Präzisionsmessungen von Radien instabiler Isotope erlauben es aber, diesen Effekt als Beitrag zur Kernmodellierung eindeutig und quantitativ zu bestimmen.

Herkömmliche Kernmodelle, bei deren Entwicklung man die Radien kurzlebiger Isotope noch nicht zur Verfügung hatte, unterschätzen den Oberflächenbeitrag zur Paarbindung und haben in der Regel Schwierigkeiten, den Knick im Trend der Radien an Schalenabschlüssen konsistent zu beschreiben.

Die Arbeit wurde vom Bundesministerium für Bildung und Forschung im Rahmen des Forschungsverbundes ISOLDE.DE und der Max-Planck-Gesellschaft gefördert und vom Fachjournal „Physical Review Letters“ als „Editors′ Suggestion“ ausgewählt. Damit heben die Editoren des Journals nach eigenen Angaben Arbeiten hervor, die besonders wichtig, interessant und gut geschrieben sind. Außerdem ist die Publikation Gegenstand eines „Highlight“ Artikels der American Physical Society.

Über die TU Darmstadt
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland. Sie verbindet vielfältige Wissenschaftskulturen zu einem charakteristischen Profil. Ingenieur- und Naturwissenschaften bilden den Schwerpunkt und kooperieren eng mit prägnanten Geistes- und Sozialwissenschaften. Weltweit stehen wir für herausragende Forschung in unseren hoch relevanten und fokussierten Profilbereichen: Cybersecurity, Internet und Digitalisierung, Kernphysik, Energiesysteme, Strömungsdynamik und Wärme- und Stofftransport, Neue Materialien für Produktinnovationen. Wir entwickeln unser Portfolio in Forschung und Lehre, Innovation und Transfer dynamisch, um der Gesellschaft kontinuierlich wichtige Zukunftschancen zu eröffnen. Daran arbeiten unsere 312 Professorinnen und Professoren, 4.450 wissenschaftlichen und administrativ-technischen Mitarbeiterinnen und Mitarbeiter sowie knapp 26.000 Studierenden. Mit der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz bildet die TU Darmstadt die strategische Allianz der Rhein-Main-Universitäten.

www.tu-darmstadt.de

MI-Nr. 35/2019, Nörtershäuser/sip

Wissenschaftliche Ansprechpartner:

TU Darmstadt
Fachbereich Physik
Prof. Dr. Wilfried Nörtershäuser
Tel.: 06151/16-23575
wnoertershaeuser@ikp.tu-darmstadt.de

Originalpublikation:

https://doi.org/10.1103/PhysRevLett.122.192502

Mareike Hochschild | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.tu-darmstadt.de/universitaet/aktuelles_meldungen/einzelansicht_229888.de.jsp

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt
14.06.2019 | Technische Universität München

nachricht Ins Innere von Materialien blicken
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics