Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker entwickeln neue Methode zur Erkennung chiraler Moleküle

29.02.2012
Physikern der Uni Kassel ist es erstmals mit Hilfe von Laserpulsen gelungen, chirale Moleküle mit hoher Empfindlichkeit nachzuweisen.

Die neue Technik besitzt ein erhebliches Anwendungspotenzial in der Chemie- und Pharmaforschung.

Forscher des Fachgebiets Experimentalphysik III – Femtosekundenspektroskopie und ultraschnelle Laserkontrolle - unter der Leitung von Prof. Dr. Thomas Baumert und Prof. Dr. Matthias Wollenhaupt konnten in einem nur tischgroßen Laserexperiment Effekte im Bereich von zehn Prozent für Moleküle mit unterschiedlicher Chiralität demonstrieren. Die durchgeführten Experimente waren derart empfindlich, dass bereits an hochverdünnten Molekülen eindeutige Messsignale beobachtet werden konnten.

Da diese Signale mit Hilfe von Laserpulsen der Dauer einiger Billardstelsekunden aufgenommen wurden, ist diese Messung im Prinzip auch ultraschnell. Ähnliche Empfindlichkeiten konnten bislang nur mittels Synchrotronstrahlung an Großforschungsanlagen erzielt werden.

Die linke Hand von der rechten zu unterscheiden ist ein Kinderspiel. Linkshändige Moleküle von rechtshändigen zu unterscheiden ist dagegen eine wissenschaftliche Herausforderung, die umso größer wird, je weniger Moleküle zur Verfügung stehen. Dabei ist Chiralität („Händigkeit“) von zentraler Bedeutung in der Natur. Denn wie Moleküle reagieren, wie sie riechen, schmecken oder wirken, hängt nicht nur von ihrer chemischen Zusammensetzung, sondern häufig auch von ihrer räumlichen Anordnung ab.

Während natürlich vorkommende Moleküle meist nur in einer – links- oder rechtshändigen - Variante bekannt sind, treten bei synthetisch erzeugten Molekülen des gleichen Stoffs oft zwei spiegelbildlich ausgerichtete Varianten auf. Diese beiden Molekülvarianten („Enantiomere“) haben oft sehr unterschiedliche Eigenschaften, was vor allem bei Medikamenten schwer wiegende Konsequenzen haben kann. Während das eine Enantiomer heilend wirkt, kann das andere unwirksam oder für den Menschen sogar schädlich sein. Bei Medikamenten, die auf chiralen Molekülen basieren, hat die chemische Analytik daher eine enorm hohe Bedeutung für die Sicherheit und zuverlässige Wirkungsweise.

Mit Hilfe von energiereichen Lichtstrahlen, die nur in Großforschungsanlagen zur Verfügung stehen, gelingt eine derartige Unterscheidung an geringsten Mengen unregelmäßig ausgerichteter Moleküle in der Gasphase erst seit wenigen Jahren. Als Unterscheidungsmerkmal werden die durch die Lichtstrahlen ausgelösten Elektronen herangezogen. Für eine bestimmte Zirkularität des Lichts und eine bestimmte Chiralität des Moleküls verlassen die Elektronen das Molekül beispielsweise in Richtung des Lichtstrahls. Trifft der Lichtstrahl auf Moleküle mit abweichender Chiralität, so dreht sich die Richtung der Elektronen um. Sie fliegen nun überwiegend entgegen der Richtung des Lichtstrahls.

Ein mechanisches Modell kann diesen Sachverhalt veranschaulichen: Versetzt man die Mutter auf einer Schraube rechtsherum in Drehung, so wird sich die Mutter immer in die gleiche Richtung bewegen, egal ob die Schraubenspitze auf den Beobachter zu- oder von ihm weg zeigt. In diesem Beispiel entspricht die Mutter dem Elektron, die Schraube dem Molekül mit einer bestimmten Chiralität und die Rechtsdrehung der Zirkularität des Lichts. Die Richtung der Schraube stellt zwei Extremfälle der unregelmäßig ausgerichteten Moleküle dar. Dieser Vergleich stammt von dem englischen Forscher Ivan Powis, der solche Untersuchungen an Großforschungsanlagen durchgeführt hat.

Für eine Routineanalytik stehen Großforschungsanlagen allerdings nicht zur Verfügung. Hier setzen nun die Arbeiten von Christian Lux, Matthias Wollenhaupt, Tom Bolze, Qingqing Liang, Jens Köhler, Christian Sarpe und Thomas Baumert ein. Das Team setzte ihre energiearmen - aber dafür intensiven - Laserpulse aus dem Labor ein. Im Unterschied zu den Experimenten an einer Großforschungsanlage werden jetzt mehrere Photonen zum Auslösen der Elektronen verwendet. Die Richtungsverteilung der ausgelösten Elektronen wird dadurch weiter verfeinert. Aufgrund der Handlichkeit des Laboraufbaus und wegen der beachtlichen Größe der beobachteten Effekte eröffnet dieser Ansatz einen wichtigen Zugang zu einer neuartigen Analytik. Weil die Laserpulse im Labor zudem auch noch auf Zeitskalen der Bewegung der Elektronen und Kerne der Moleküle maßgeschneidert werden können, erhoffen sich die Forscher auch neue grundlegende Erkenntnisse über die Wechselwirkung chiraler Moleküle in Lichtfeldern.

Die Arbeiten der Kassler Forscher werden in der 20. Ausgabe 2012 der international renommierten Zeitschrift Angewandte Chemie im Druck erscheinen und wurden am 20. Februar 2012 online gestellt (DOI: 10.1002/anie.201109035). Die Gutachter der Zeitschrift zeichneten den Beitrag mit dem "VIP" Status (VIP = very important paper) aus.

Info
Prof. Dr. Thomas Baumert
Universität Kassel
Institut für Physik
Tel.: 0561/804-4452
E-Mail: baumert@physik.uni-kassel.de

Dr. Guido Rijkhoek | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics