Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der weltgrößte Kameraverschluss reist nach Hawaii

21.03.2006


Astronomen und technische Mitarbeiter am Argelander-Institut für Astronomie der Universität Bonn und am institutseigenen Observatorium "Hoher List" haben einen ungewöhnlich großen Präzisionsverschluss für eine astronomische Riesenkamera entwickelt. Astronomen auf Hawaii werden diesen Verschluss, dessen Öffnung knapp einen halben Meter im Quadrat misst, in ihrer Pan-STARRS Kamera einsetzen - das ist mit einer Auflösung von 1.400.000.000 Pixeln (1.400 Megapixel!) die größte Digitalkamera, die jemals gebaut wurde. Ein Team von Astronomen will mit ihr auf die Jagd nach Asteroiden gehen, die der Erde bedrohlich nahe kommen könnten. Um sie zu finden und ihre Bewegung zu verfolgen, müssen möglichst große Himmelsareale wiederholt und in rascher Folge aufgenommen werden. Deshalb wurde die Kamera so groß gewählt wie technisch machbar.



Zu dem riesigen Detektorfeld wünschte sich das Team am Institute for Astronomy der University of Hawaii einen "Bonn Shutter" ("shutter" ist die englische Übersetzung für "Kameraverschluss") aus dem Argelander-Institut, und das aus gutem Grund: Die Instrumentierungsgruppe dort ist auf den Bau von astronomischen Kameras und Kamerazubehör spezialisiert. Sie hat sich in den vergangenen Jahren international gerade durch die Konstruktion großer, hochpräziser Kameraverschlüsse einen Namen gemacht. Verschlüsse unterschiedlichster Größe wurden bereits entwickelt, für Kameras an Teleskopen von zwei bis zehn Metern Durchmesser - in Andalusien, La Palma, Arizona und an der Europäischen Südsternwarte in Chile. Schon der kleinste dieser Verschlüsse ist mit einer Öffnung von 11cm x 11cm immerhin 15mal größer als der einer Kleinbildkamera. Das neue Exemplar ist das größte, das vom Team um Dr. Klaus Reif bislang gebaut wurde. In den ersten Februartagen hat es seine Reise nach Hawaii angetreten. Dort ist es bereits erfolgreich getestet worden.



Jeder Fotograf und Fotoamateur hat übrigens einen ähnlichen Verschluss vor Augen, wenn er einen Film in seiner Spiegelreflex-Kamera wechselt: Eine kleine viereckige Öffnung unmittelbar vor der Filmebene, die mit einer Metall-, Kunststoff- oder Textillamelle verschlossen ist. Bei einer Belichtung wird diese Lamelle von einer Feder blitzschnell von der Öffnung gezogen, um die Filmebene freizugeben, und anschließend eine zweite Lamelle wieder in die Öffnung gezogen, um sie zu verschließen. Bei sehr kurzen Belichtungen folgt die zweite Lamelle, noch bevor die erste ganz verschwunden ist: Es entsteht ein sich bewegener Schlitz. Daher der Name "Schlitzverschluss".

Dieses Schlitzverschlussprinzip ist auch die Grundlage der "Bonn Shutter". Damit erschöpfen sich aber auch schon die Ähnlichkeiten mit einer konventionellen Kamera. Das liegt nicht alleine an der schieren Größe, sondern vor allem an den hohen technischen Anforderungen. Bei der Asteroidensuche werden im Verlaufe von Jahren von einigen Hunderttausend bis zu mehreren Millionen Aufnahmen gemacht. Und das soll der Verschluss nicht nur irgendwie überleben, sondern er muss seine Qualität unverändert behalten.

Denn eine astronomische Kamera liefert nicht einfach nur Bilder. Sie ist vor allem ein Präzisionsmessinstrument zur Bestimmung von Helligkeiten. Jedes einzelne Pixel misst die dort auftreffende Anzahl von Lichtteilchen, den Photonen. Damit das exakt klappt, müssen die Belichtungszeiten ganz präzise eingehalten werden, und das an jeder Stelle der Detektorfläche - sozusagen für jedes einzelne Pixel. Astronomen sprechen von Belichtungshomogenität. Die Arbeitsgruppe am Argelander-Institut hat erreicht, dass die Belichtungszeiten für beliebige Pixel in der 48cm x 48cm großen Öffnung um weniger als eine tausendstel Sekunde voneinander abweichen. Dazu wurde neben der präzise gefertigten Verschlussmechanik ein mikroprozessorgesteuertes Antriebsverfahren entwickelt. Diese Kombination stellt sicher, dass die Bewegung der motorgetriebenen Verschlusslamellen mit der geforderten Genauigkeit abläuft. Und das muss auch in gut 3.000 Metern Höhe bei frostigen Temperaturen absolut zuverlässig funktionieren. Zudem werden die Lamellen in weniger als einer Sekunde über die komplette Verschlussöffnung bewegt. Dazu müssen sie besonders leicht sein. Schließlich blieb wieder nur eine Eigenentwicklung: Eine mehrlagige "Sandwich"-Struktur, wie sie im Flugzeug- und Rennwagenbau üblich ist.

Die gleichzeitige Beherrschung der drei Bereiche Präzisionsmechanik, modernste Elektronik und Software sind die besondere Stärke des Teams um Dr. Klaus Reif. Zusammen mit der langjährigen Erfahrung beim Betrieb des Observatoriums "Hoher List" mit seinen sechs Teleskopen und bei der Neuentwicklung von Teleskopinstrumentierungen sind sie die Grundlage für den Erfolg. Und die Nachfrage nach "Bonn Shutter" hält an. Zur Zeit ist bereits ein weiterer großer Kameraverschluss für ein australisches Teleskop in Arbeit. Daneben kam aus den USA die Anfrage nach dem bisher größten Exemplar mit einer Öffnung von 50cm x 50cm. Die dazugehörige Kamera hört auf den vielsagenden Namen DarkEnergyCamera. Sie wird für ein Vier-Meter-Teleskop in Chile entwickelt. Von der Auswertung der Aufnahmen dieser Kamera erhofft man sich entscheidende Fortschritte bei der Beantwortung der Frage: Was ist die "Dunkle Energie"?

Kontakt:
Dr. Klaus Reif
Argelander-Institut für Astronomie
Telefon: 0228/73-7834
E-Mail: reif@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Astronom Kameraverschluss Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick auf die Erde vor der Sonne
19.06.2019 | Georg-August-Universität Göttingen

nachricht Zwei erdähnliche Planeten um einen der kleinsten Sterne – und die Möglichkeit, von dort aus die Erde nachzuweisen
18.06.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

19.06.2019 | Messenachrichten

Blick auf die Erde vor der Sonne

19.06.2019 | Physik Astronomie

Zellteilung auf Hochtouren

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics