Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker simulieren das Kristallwachstum im Computer

31.10.2001


Vereinfachtes Modell für das Kristallwachstum: Ein Atom landet auf der Oberfläche (oben rechts), ein anderes bewegt sich auf den benachbarten Gitterplatz (weißer Pfeil). Grafik: Biehl


Ergebnis der Computersimulation eines Kristalls mit Pyramidenwachstum, nachdem sich mehr als fünf Milliarden Teilchen auf 512 x 512 Gitterplätzen angeordnet haben (Aufsicht).


Das Wachstum von Halbleiterkristallen wird am Lehrstuhl für Theoretische Physik III (Computational Physics) der Universität Würzburg mit Hilfe von Computersimulationen untersucht. Ein Schwerpunkt liegt auf Materialien, die aus verschiedenen Atomsorten bestehen, wie es zum Beispiel bei den modernen Verbindungshalbleitern der Fall ist.

Für die Entwicklung neuartiger elektronischer Bauelemente - zum Beispiel von verbesserten Laserdioden für CD-Spieler - benötigt man perfekte Kristalle aus Halbleitermaterialien. Eine wichtige Technik für die Herstellung solcher Kristalle im Labor ist die Molekularstrahlepitaxie: Dabei werden in einer Vakuumkammer geringe Mengen des gewünschten Materials in einem Ofen verdampft. Die Atome treffen auf die Oberfläche einer Schicht, in die sie schließlich eingebaut werden und die dadurch wächst.

"Ein fundiertes theoretisches Verständnis der Wachstumsprozesse sollte es ermöglichen, diese experimentellen Techniken systematisch zu verbessern", sagt der Würzburger Physiker Dr. Michael Biehl. In diesem Zusammenhang stelle die Simulation im Computer ein wichtiges Werkzeug dar.

Bei der Molekularstrahlepitaxie sollen in der Regel möglichst glatte Schichten des gewünschten Materials entstehen. In der Praxis zeigen sich aber häufig Abweichungen von diesem Ideal: Es bilden sich unregelmäßige, raue Oberflächen oder sogar kleine Hügel, die an Pyramiden oder Kegel erinnern.

"In der Simulation kann man nun - anders als beim Experiment - ganz bestimmte Prozesse verbieten oder bevorzugen", so Dr. Biehl. Auf diese Weise lasse sich zum Beispiel herausfinden, welche Rolle es für die Bildung der Hügel spielt, wenn Atome an den Kanten des wachsenden Kristalls gewissermaßen herunterklettern.

In diesem Zusammenhang stellen sich weitere Fragen: Welchen Einfluss hat die Temperatur oder die Wachstumsgeschwindigkeit auf die Hügelbildung? Unter welchen Bedingungen entstehen möglichst glatte Flächen? Solchen und ähnlichen Fragen gehen Dr. Biehl, Prof. Dr. Wolfgang Kinzel und Diplom-Physiker Martin Ahr zusammen mit anderen Kollegen im Rahmen eines Projektes nach, das von der Deutschen Forschungsgemeinschaft gefördert wird.

Es sollen Modelle weiterentwickelt werden, welche die Simulation relativ großer Systeme mit vertretbarem Zeitaufwand erlauben. Denn bislang stoßen die Wissenschaftler noch rasch an die Leistungsgrenzen der heutigen Rechner. Schließlich müssen möglichst große Systeme aus sehr vielen Atomen simuliert werden, um die interessanten Effekte überhaupt beobachten zu können. Mit der Zahl der Teilchen wächst natürlich auch die benötigte Rechenzeit.

Deshalb ist es von besonderer Bedeutung, effiziente Modelle und schnelle Computerprogramme zu entwickeln. Der wichtigste und zugleich schwierigste Schritt besteht darin, geeignete Modellvorstellungen zu erarbeiten: Sie sollen einerseits die komplizierten physikalischen Prozesse soweit vereinfachen, dass das Problem lösbar wird. Andererseits müssen sie natürlich immer noch die wichtigsten Materialeigenschaften wiedergeben.

Dr. Biehl: "Bei einer sehr erfolgreichen Klasse von Modellen werden die simulierten Teilchen nur auf den Plätzen eines fest vorgegebenen Kristallgitters bewegt. Nach bestimmten Spielregeln werden Atome wie Bauklötzchen auf das Gitter gesetzt, können dort herumwandern, sich an andere Teilchen anlagern und zur Ruhe kommen." Die Bewegungsregeln ergeben sich dabei aus den physikalischen Wechselwirkungen der Teilchen, die stark vereinfacht durch anziehende oder abstoßende Kräfte repräsentiert werden.

Weitere Informationen: Dr. Michael Biehl, T (0931) 888-5865, Fax (0931) 888-5141, E-Mail: 
biehl@physik.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: Atom Schicht Simulation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiße Sterne werden laut ESO-Daten von riesigen magnetischen Flecken heimgesucht
01.06.2020 | Max-Planck-Institut für Astronomie

nachricht Wieso Radium-Monofluorid den Blick ins Universum fundamental verändern kann
28.05.2020 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics