Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker simulieren das Kristallwachstum im Computer

31.10.2001


Vereinfachtes Modell für das Kristallwachstum: Ein Atom landet auf der Oberfläche (oben rechts), ein anderes bewegt sich auf den benachbarten Gitterplatz (weißer Pfeil). Grafik: Biehl


Ergebnis der Computersimulation eines Kristalls mit Pyramidenwachstum, nachdem sich mehr als fünf Milliarden Teilchen auf 512 x 512 Gitterplätzen angeordnet haben (Aufsicht).


Das Wachstum von Halbleiterkristallen wird am Lehrstuhl für Theoretische Physik III (Computational Physics) der Universität Würzburg mit Hilfe von Computersimulationen untersucht. Ein Schwerpunkt liegt auf Materialien, die aus verschiedenen Atomsorten bestehen, wie es zum Beispiel bei den modernen Verbindungshalbleitern der Fall ist.

Für die Entwicklung neuartiger elektronischer Bauelemente - zum Beispiel von verbesserten Laserdioden für CD-Spieler - benötigt man perfekte Kristalle aus Halbleitermaterialien. Eine wichtige Technik für die Herstellung solcher Kristalle im Labor ist die Molekularstrahlepitaxie: Dabei werden in einer Vakuumkammer geringe Mengen des gewünschten Materials in einem Ofen verdampft. Die Atome treffen auf die Oberfläche einer Schicht, in die sie schließlich eingebaut werden und die dadurch wächst.

"Ein fundiertes theoretisches Verständnis der Wachstumsprozesse sollte es ermöglichen, diese experimentellen Techniken systematisch zu verbessern", sagt der Würzburger Physiker Dr. Michael Biehl. In diesem Zusammenhang stelle die Simulation im Computer ein wichtiges Werkzeug dar.

Bei der Molekularstrahlepitaxie sollen in der Regel möglichst glatte Schichten des gewünschten Materials entstehen. In der Praxis zeigen sich aber häufig Abweichungen von diesem Ideal: Es bilden sich unregelmäßige, raue Oberflächen oder sogar kleine Hügel, die an Pyramiden oder Kegel erinnern.

"In der Simulation kann man nun - anders als beim Experiment - ganz bestimmte Prozesse verbieten oder bevorzugen", so Dr. Biehl. Auf diese Weise lasse sich zum Beispiel herausfinden, welche Rolle es für die Bildung der Hügel spielt, wenn Atome an den Kanten des wachsenden Kristalls gewissermaßen herunterklettern.

In diesem Zusammenhang stellen sich weitere Fragen: Welchen Einfluss hat die Temperatur oder die Wachstumsgeschwindigkeit auf die Hügelbildung? Unter welchen Bedingungen entstehen möglichst glatte Flächen? Solchen und ähnlichen Fragen gehen Dr. Biehl, Prof. Dr. Wolfgang Kinzel und Diplom-Physiker Martin Ahr zusammen mit anderen Kollegen im Rahmen eines Projektes nach, das von der Deutschen Forschungsgemeinschaft gefördert wird.

Es sollen Modelle weiterentwickelt werden, welche die Simulation relativ großer Systeme mit vertretbarem Zeitaufwand erlauben. Denn bislang stoßen die Wissenschaftler noch rasch an die Leistungsgrenzen der heutigen Rechner. Schließlich müssen möglichst große Systeme aus sehr vielen Atomen simuliert werden, um die interessanten Effekte überhaupt beobachten zu können. Mit der Zahl der Teilchen wächst natürlich auch die benötigte Rechenzeit.

Deshalb ist es von besonderer Bedeutung, effiziente Modelle und schnelle Computerprogramme zu entwickeln. Der wichtigste und zugleich schwierigste Schritt besteht darin, geeignete Modellvorstellungen zu erarbeiten: Sie sollen einerseits die komplizierten physikalischen Prozesse soweit vereinfachen, dass das Problem lösbar wird. Andererseits müssen sie natürlich immer noch die wichtigsten Materialeigenschaften wiedergeben.

Dr. Biehl: "Bei einer sehr erfolgreichen Klasse von Modellen werden die simulierten Teilchen nur auf den Plätzen eines fest vorgegebenen Kristallgitters bewegt. Nach bestimmten Spielregeln werden Atome wie Bauklötzchen auf das Gitter gesetzt, können dort herumwandern, sich an andere Teilchen anlagern und zur Ruhe kommen." Die Bewegungsregeln ergeben sich dabei aus den physikalischen Wechselwirkungen der Teilchen, die stark vereinfacht durch anziehende oder abstoßende Kräfte repräsentiert werden.

Weitere Informationen: Dr. Michael Biehl, T (0931) 888-5865, Fax (0931) 888-5141, E-Mail: 
biehl@physik.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: Atom Schicht Simulation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics