Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die kleinsten Flüstergalerien für Licht kommen aus Leipzig

26.07.2004


(a-c) Rasterelektronenmikroskopische Bilder einer ZnO-Nadel in verschiedenen Vergrößerungen, Längenskala in (a) und (c) ist 10 µm bzw. 300 nm. (d) Quadratwurzel-förmiger Verlauf des Durchmessers über der Länge


Leipziger Halbleiter-Forschern ist es gelungen, die weltweit kleinsten "Flüstergalerien" für sichtbares Licht herzustellen und zu untersuchen. Es handelt sich um nadelförmige Zinkoxid-Kristalle, deren Durchmesser sich stetig vom Mikrobereich (etwa 1 µm) bis in den Nanobereich (etwa 100 nm) bis herunter auf Null an der Spitze verjüngt.


Sogenannte Flüstergalerien haben die Eigenschaft, dass man auf Grund einer besonderen Beschaffenheit schallreflektierender Gewölbe geflüsterte Worte noch zig Meter weiter ohne Probleme verstehen kann. Dieses besonders gern von barocken Baumeistern angewandte Prinzip (z.B. Petersdom Rom, St. Pauls Cathedral London) gilt auch für andere Wellen als Schall, z.B. Licht. In einem Resonator umlaufende Wellen interferieren mit sich selbst und führen zu Resonanzen, wenn der Umlaufweg ein ganzzahliges Vielfaches N (Modenzahl) der Wellenlänge beträgt.

Andreas Rahm und Thomas Nobis, Doktoranden in der Abteilung Halbleiterphysik von Prof. Dr. Marius Grundmann am Institut für Experimentelle Physik II haben im Rahmen der Arbeiten in der DFG Forschergruppe 522 ’’Architektur von mikro- und nanodimensionalen Strukturelementen’’ nadelförmige Zinkoxid- (ZnO-) hergestellt bzw. untersucht, deren Durchmesser sich stetig vom Mikrobereich (etwa 1 µm) bis in den Nanobereich (etwa 100 nm) bis herunter auf Null an der Spitze verjüngt (Abb.1). Das Licht läuft auf der hexagonalen Querschnittsfläche um. Ein Analogon aus der Welt des Schalls und der Architektur wäre eine Kombination der berühmten Flüstergalerie in der St. Paul’s Kathedrale und des Swiss Re Towers in London. Allerdings sind die untersuchten Lichtwellenlängen und damit die Strukturgrößen etwa zwei Millionen mal kleiner als die Wellenlänge gesprochenen Schalls.


Für die Herstellung der ZnO Nanonadeln haben die Leipziger Physiker mit Mitteln der Deutschen Forschungsgemeinschaft eine neuartige Epitaxieanlage gebaut. Diese erlaubt die Züchtung mittels Laserablation bei besonders hohen Gasdrücken, was die Ausbildung von Nanostrukturen ermöglicht. Die Nanostrukturen wachsen in selbstorganisierter (engl.: self-assembled) Art und Weise. Das heißt, dass sie automatisch entstehen, bestimmt durch die eingestellten Wachstumsbedingungen und die mikroskopischen Wachstumsprozesse. Diese Methode heißt auch ’’bottom-up’’ Ansatz. Sie erlaubt die Herstellung großer Mengen gleichartiger Nanostrukturen zu viel geringerem Preis als es mit konventionellen Lithographie- und Ätztechniken (dem sogenannten ’’top-down’’ Ansatz) möglich wäre.

Bisherige theoretische und experimentelle Arbeiten zu Mikroresonatoren für Licht beschäftigten sich mit vergleichsweise großen Kavitäten (Hohlräumen) mit Modenzahlen N größer als 20. Die Flüstergalerie in der St. Paul’s Kathedrale in London hat zum Beispiel ein N von etwa 100 für Schall. Am Fuß der ZnO Nanonadel passen nur noch N=6 Lichtwellenlängen in den Umlaufweg. Mit abnehmendem Durchmesser ändert sich die Farbe der optischen Resonanzen (Abb.2). Die ZnO Spitze wird am Ende so dünn, dass N=1 und ein sogenannter monomodiger Wellenleiter erreicht werden. Die Leipziger Halbleiterphysiker haben zudem gefunden, dass eine von ihnen erarbeitete, vergleichsweise einfache Theorie die Farbe der optischen Resonanzen für alle Durchmesser mit hoher Präzision beschreibt. Diplom-Physiker Thomas Nobis hierzu: ’’Dies ist zunächst überraschend, da die von uns verwendete Theorie eigentlich nur für Modenzahlen N gelten sollte, die viel größer als 1 sind’’. Die Ergebnisse wurden bei der renommierten Zeitschrift ’’Physical Review Letters’’ angenommen und werden dort in Kürze veröffentlicht.

Selbstorganisierte Nanostrukturen stehen auch im Zentrum des kürzlich gestarteten Exzellenznetzes ’’SANDiE’’, das die Universität Leipzig koordiniert. Insgesamt 28 europäische Partner von Portugal bis Russland einschließlich den führenden europäischen Unternehmen der Photonikbranche erforschen dort selbstorganisierte Nanostrukturen und entwickeln darauf basierende neuartige Bauelemente. In den weiteren Arbeiten sollen nun aus den Leipziger nanoskopischen Resonatoren neuartige Laser hergestellt werden, die eines Tages z.B. als Basis für quantenkryptographische Datenübertragung mit Einzelphotonen dienen sollen.

Weitere Informationen:

Prof. Dr. Marius Grundmann
Telefon: 0341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de

Dr. Bärbel Adams | idw
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Berichte zu: Durchmesser Flüstergalerie Nanostruktur ZnO

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtverschmutzung macht Fische mutig

21.09.2018 | Ökologie Umwelt- Naturschutz

Gegen Straßenschmutz im Regenwasser

21.09.2018 | Ökologie Umwelt- Naturschutz

Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

21.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics