Direkter Blick auf Starburst-Geschichte einer Galaxie

Der Hauptteil der Zwerggalaxie NGC 1569 mit den beiden Supersternhaufen

Doktorand an der Universitäts-Sternwarte untersucht Entwicklung der Zwerggalaxie NGC 1569

Ein direkter Blick in die Phase einer ausbruchartigen Entstehung von Sternen, dem so genannten Starburst einer Galaxie ist dem Astrophysiker Peter Anders von der Georg-August-Universität Göttingen gelungen. Er untersuchte das Sternhaufensystem der Zwerggalaxie NGC 1569 – die Starburst-Galaxie, die der Erde am nächsten liegt. Dazu hat er Archivdaten aus mehreren Beobachtungsprojekten mit dem Weltraumteleskop Hubble kombiniert und mit Computer-Modellen ausgewertet.

Ein direkter Blick in die Phase einer ausbruchartigen Entstehung von Sternen, dem so genannten Starburst einer Galaxie ist dem Astrophysiker Peter Anders von der Georg-August-Universität Göttingen gelungen. Er untersuchte das Sternhaufensystem der Zwerggalaxie NGC 1569 – die Starburst-Galaxie, die der Erde am nächsten liegt. Dazu hat er Archivdaten aus mehreren Beobachtungsprojekten mit dem Weltraumteleskop Hubble kombiniert und mit Computer-Modellen ausgewertet. Unter Sternhaufen versteht die Wissenschaft eine Ansammlung von Sternen, die zur selben Zeit in einem eng begrenzten Raum unter denselben Bedingungen entstanden sind. Der Starburst in NGC 1569 begann vor rund 25 Millionen Jahren und dauerte etwa 20 Millionen Jahre, erläutert der Doktorand. Der Nachwuchswissenschaftler ist Mitglied der von Privatdozentin Dr. Uta Fritze-von Alvensleben an der Universitäts-Sternwarte Göttingen, Abteilung Extragalaktik, geleiteten Forschungsgruppe.

„Während locker gebundene, offene Sternhaufen auch bei normaler Sternbildung entstehen, sich aber relativ schnell wieder auflösen, werden massereiche, kompakte und damit langlebige Haufen, die so genannten Kugelsternhaufen, nur in Starbursts gebildet“, erklärt Peter Anders, der bei seiner Doktorarbeit auch von Dr. Richard de Grijs vom Institut für Physik und Astronomie der Universität in Sheffield betreut wird. Diese kompakten Sternhaufen erlauben eine Aufzeichnung der Starburst-Geschichte einer Galaxie, indem man ihr Alter genau bestimmt. NGC 1569 ist weniger als sieben Millionen Lichtjahre von der Erde entfernt und kann mit den hochauflösenden Instrumenten an Bord des Weltraumteleskops Hubble, das die europäische und die amerikanische Weltraumorganisationen ESA und NASA gemeinsam betreiben, hervorragend untersucht werden. Darüber hinaus sind in dieser Starburst-Galaxie mindestens zwei sehr massereiche so genannte Super-Sternhaufen zu finden.

Mit den Hubble-Archivdaten, die das Projekt Astronomisches Virtuelles Teleskop (Astrovirtel) der Europäischen Südsternwarte bereitgestellt hat, konnte Peter Anders die physikalischen Parameter der Sternhaufen genauer bestimmen, als dies bislang möglich war. „Neben den beiden sehr markanten und schon gut untersuchten Super-Sternhaufen befinden sich in NGC 1569 noch eine große Anzahl weiterer kleiner Sternhaufen. Diese liefern wichtige Informationen über Entstehung und Entwicklung von Sternhaufen sowie über die Entwicklung des Starbursts“, so der Astrophysiker. So fand er heraus, dass die große Mehrheit der Sterngruppen in NGC 1569 weit masseärmer ist als die kompakten, sehr alten Kugelsternhaufen der Milchstraße und sie eher mit den jungen, offenen Sternhaufen zu vergleichen sind. Einige dieser Ansammlungen, darunter auch die beiden Super-Sternhaufen, sind jedoch so massereich und kompakt, dass sie sich einmal zu langlebigen Kugelsternhaufen entwickeln könnten. Die masseärmeren Objekte dagegen werden sich in den kommenden Milliarden Jahren auflösen, prognostiziert der Nachwuchswissenschaftler.

Auch aus der Beobachtung, dass der Anteil massereicher Sternhaufen zu Anfang des Starbursts deutlich höher war als am Ende, ziehen die Göttinger Forscher erste Schlussfolgerungen. „Wir schreiben dieses Phänomen den unterschiedlichen physikalischen Zuständen während dieser beiden Epochen zu. Unsere These lautet, dass über einen Rückkopplungsprozess die älteren Sternhaufen die Bildung jüngerer massereicher Haufen erschweren“, fasst Dr. Fritze-von Alvensleben zusammen. Eine endgültige Erklärung für dieses Phänomen stehe jedoch noch aus.

Kontaktadresse:

Peter Anders
Georg-August-Universität Göttingen
Fakultät für Physik, Universitäts-Sternwarte,
Abteilung Galaktische und Extragalaktische Forschung
Geismar Landstraße 11, 37083 Göttingen
Telefon (0551) 39-5054, Fax -5043
e-mail: panders@uni-sw.gwdg.de

Media Contact

Marietta Fuhrmann-Koch idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer