MATERIALICA 2005: Tastend durch die Nanowelt

Erfolgreiche Ausgründung aus der TU Chemnitz stellt neues Messgerät erstmals auf einer Fachmesse vor


Die Zahl von Anwendungen, bei denen mechanische Schutzschichten eingesetzt werden, um die Lebensdauer von Bauteilen zu erhöhen, nimmt ständig zu. Die Wahl der richtigen Schicht ist jedoch nach wie vor mit aufwändigen Versuchsreihen verbunden. Um die Entwicklungszeit abzukürzen, sind zunächst genaue mechanische Parameter der Schichtmaterialien erforderlich, um damit gegebenenfalls Modellrechnungen durchzuführen und die Zahl der in Frage kommenden Materialien und Schichtdicken einzugrenzen. Die Messungen sollten dabei so anwendungsnah wie möglich erfolgen.

Aus dieser Situation heraus haben die sieben Mitarbeiter der ASMEC Advanced Surface MEChanics GmbH mit Sitz in Radeberg bei Dresden gemeinsam mit der Professur Physik fester Körper der TU Chemnitz schon seit längerer Zeit auf dem Gebiet der mechanischen Oberflächeneigenschaften und der Kontaktmechanik nach neuen Messmethoden gesucht. Die von dem ehemaligen Uni-Mitarbeiter und heutigem Geschäftsführer Dr. Thomas Chudoba 2003 gegründete Firma hat nun eine Idee, die an der TU entstand, erfolgreich zu Ende gedacht. Für superfeine Messungen entwickelten sie einen so genannten Universellen Nanomechanischen Tester (UNAT). Seinen ersten Messeauftritt erlebt das Gerät vom 20. bis 22. September 2005 auf der Werkstoff-Fachmesse „Materialica“ in München. Auf dem Gemeinschaftsstand der NeMa (Stand 439) in Halle C1 der Neuen Messe München wird demonstriert, das mit diesem Gerät eine sehr anwendungsnahe mechanische Charakterisierung von Schichten und Oberflächen möglich ist.

Der Universelle Nanomechanische Tester UNAT stellt eine neue Geräteklasse dar, die mehr bietet als die bisher verfügbare Messtechnik zur mechanischen Charakterisierung. Im Gegensatz zu sogenannten Nanoindentern, Scratchtestern und Tribometern arbeitet er mit zwei senkrecht zueinander angeordneten Messköpfen die völlig unabhängig voneinander und mit annähernd der gleichen Kraft- und Wegauflösung arbeiten. Das Rauschen des Messsignals liegt bei maximalen Verschiebungen von ± 100 µm im Bereich von 1-2 nm und bei maximalen Kräften von ± 2 N bei 5-10 µN (die digitale Auflösung ist noch wesentlich geringer). Trotzdem kann eine sehr hohe Steifigkeit des Messsystems in die jeweils andere Richtung gewährleistet werden. Diese hohe Auflösung erlaubt es, so genannte Kraft-Verschiebungskurven beim Eindringen von Diamantkörpern in die Oberfläche dünner Schichten zu messen, und daraus Materialparameter abzuleiten wie zum Beispiel den Elastizitätsmodul oder die Fließgrenze. Das ist die Voraussetzung für eine zuverlässige mechanische Bewertung und Optimierung der Schichten. Um die Bedingungen der Anwendung im Labormaßstab realitätsnah abzubilden, kann die bisher übliche Diamantspitze erstmals gegen beliebige feste Materialien ausgetauscht werden. Dadurch können die tatsächlichen Reibpaarungen, wie sie in der Praxis ständig auftreten, im Labor mit Nanometer-Auflösung nachgebildet und untersucht werden – und das auch bei Anwesenheit von Ölen und anderen Schmierfilmen. Mit dieser Methode lassen sich wertvolle Rückschlüsse für eine Optimierung der Schichtsysteme im Reibkontakt und für das gesamte Tribosystem gewinnen. Das Spektrum der messbaren Materialien erstreckt sich von weichen Polymeren bis hin zu ultraharten mechanischen Schutzschichten. Auch Schichten von nur wenigen Nanometer Dicke sind noch messbar, wobei es physikalisch bedingt Grenzen für die Ermittlung der einzelnen Parameter gibt.

Das Gerät wird ergänzt durch eine hochauflösende Optik mit einer Vergrößerung bis 2180-fach. Optional kann auch ein Atomkraftmikroskop integriert werden, mit dem dann noch wesentlich höhere Vergrößerungen der Messstellen möglich sind. Durch die hohe Positioniergenauigkeit der absolut messenden Tischsysteme von 1µm und besser, gibt es keine Probleme beim Wiederfinden der Messstellen. Die Messpositionen können im optischen Bild angezeigt und per Mausklick festgelegt werden.

Durch die Kombination der zwei Messköpfe, die beide in Druck- und Zugrichtung arbeiten, ergeben sich eine Vielzahl neuer Messmöglichkeiten. So können z. B. laterale Anisotropien in Materialien festgestellt oder Ermüdungstests an Schichten durchgeführt werden. Viele mechanische Probleme aus der Beschichtungstechnik, der Mikrosystemtechnik, der Mikroelektronik, der Tribologie oder der Nanotechnologie lassen sich mit dem neuen Gerätetyp bearbeiten.

„Die neueste Generation des Universellen Nanomechanischen Testers wird künftig auch an der Professur Physik fester Körper der TU Chemnitz zum Einsatz kommen“, freut sich Prof. Dr. Frank Richter. „Damit profitieren wir von unseren, mittlerweile erfolgreich in der Praxis umgesetzten Ideen“.

Weitere Informationen erteilen ASMEC Advanced Surface Mechanics GmbH, Bautzner Landstraße 45, 01454 Radeberg OT Rossendorf, Dr. Thomas Chudoba, Telefon (03 51) 26 95 – 3 45, Fax (03 51) 26 95 – 3 46, E-Mail info@asmec.de , http://www.asmec.de sowie TU Chemnitz, Professur Physik fester Körper, Prof. Dr. Frank Richter, Telefon (03 71) 5 31 – 80 46, Fax (03 71) 5 31 – 30 42, E-Mail f.richter@physik.tu-chemnitz.de

Media Contact

Mario Steinebach idw

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer