Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selektives Lasersintern von Keramik

20.09.2000


Verfahrensablauf bei der

Porzellanherstellung durch Lasersintern


Wechselwirkungen Laserstrahl -

Porzellanpulver


... mehr zu:
»Laserstrahl
Die Professur für Ingenieurkeramik des Institutes für Nichtmetallische Werkstoffe der TU Clausthal präsentiert auf der internationalen Fachmesse Ceramitec vom 17. bis 21. Oktober 2000 in
München Ergebnisse aktueller Forschungsvorhaben zum selektiven Lasersintern von Keramik.

Die Professur für Ingenieurkeramik (Prof. Dr.-Ing. Jürgen G. Heinrich) des Institutes für Nichtmetallische Werkstoffe der TU Clausthal präsentiert auf der internationalen Fachmesse Ceramitec vom 17. bis 21. Oktober 2000 in München Ergebnisse aktueller Forschungsvorhaben zum selektiven Lasersintern von Keramik.

Die Herstellung keramischer Prototypen ist bislang mit viel Handarbeit verbunden und daher zeitaufwendig. Das neue Verfahren, gegenwärtig in der Entwicklungsphase befindlich, wird den Aufwand der Modell- und Formenherstellung drastisch verringern.

Für dieses Ziel werden zunächst mit dem 3D-CAD-System Unigraphics Modelle im Rechner erstellt, in Schichten geschnitten und als NC-Datensatz exportiert. Dafür finden Standard-Programm-Module Anwendung. In den Lasersinteranlagen werden diese Datensätze von einem eigens programmierten Post-Prozessor weiterverarbeitet und zum sukzessiven Aufbau von keramischen Prototypen verwendet.

Das angestrebte Verfahren hat mit den meisten Lösungsansätzen des Rapid Prototyping den schichtweisen Aufbau des Bauteils gemeinsam. Dazu wird das Pulver in einer Lage von wenigen Zehntelmillimetern Dicke auf einen Objekttisch aufgebracht. Anschließend wird die Schichtinformation des herzustellenden Bauteils mit dem Laser selektiv auf der Pulverschicht abgebildet. Der Tisch fährt um eine Schicht-dicke nach unten, eine weitere Pulverlage wird aufgetragen und der Laserprozess beginnt von neuem.

Nach Abbildung aller Schichten kann der Prototyp aus dem Prozessraum herausgenommen und gegebenenfalls weiteren Behandlungsschritten, dem finishing, unterzogen werden. Im Fall der Porzellanherstellung wird es sich dabei um eine Nachsinterung zur weiteren Verdichtung und Verfestigung des Scherbens sowie um die Glasierung des Bauteils handeln.

Im Rahmen der erwähnten Arbeiten sollen nicht nur technologische Aspekte, sondern auch die Wechselwirkungen von Laserstrahlung unterschiedlicher Wellenlänge mit verschiedenen keramischen Werkstoffen durch Parameterstudien untersucht werden. Um ein möglichst breites Anwendungsspektrum abzudecken, kommen dabei zwei unterschiedliche Sinteranlagen mit verschiedenen Lasern - CO2 und Nd:YAG - zur Anwendung.

Neben der bereits erwähnten Methode - Bauteilaufbau mit einem fahrbaren Objekttisch und lagenweise diskontinuierlicher Pulverzuführung - wird eine weitere Methode mit kontinuierlicher Pulverzuführung angewandt. Kernstück der Anlage ist ein Roboterarm, der in einem speziellen Kopf einen Lichtwellenleiter und eine pneumatische Pulverzuführung kombiniert. Durch diese Anordnung treffen Laserstrahl und keramisches Pulver in einer Düse aufeinander und die Wechselwirkungen finden statt, bevor das Material die Düse verlässt.

Im Vergleich zur Verwendung von Verfahreinheiten für das Pulverbett ist es mit dem wesentlich flexibler einsetzbaren Roboter möglich, Bewegungen des Laserstrahls nebst Pulverzuführung frei im Raum durchzuführen und somit kompliziert geformte monolithische keramische Bauteile herzustellen oder verschiedenste Bauteilgeometrien mit keramischem Material zu beschichten.

Im Gegensatz zu konventionellen Herstellungsverfahren werden beim Lasersintern die Aufheiz- und Abkühlvorgänge des Materials wesentlich beschleunigt. Die sich daraus ergebenden Unterschiede im Materialverhalten sind Gegenstand der laufenden Untersuchungen.

Die Ankopplung des Laserstrahls an die Materie vollzieht sich innerhalb einer Eindringtiefe bis annähernd zum doppelten seiner Wellenlänge und somit innerhalb eines Bruchteils der eigentlichen Schichtdicke. Alle weiteren das Pulver verfestigenden Prozesse werden demzufolge nur aufgrund von Wärmeleitprozessen innerhalb der Schüttung ausgelöst.

Beim schichtweisen Aufbau eines Bauteils mit Schichtdicken von teilweise unter 100 µm wird in der Regel eine hohe Relativgeschwindigkeit zwischen Laserstrahl und Materie gewählt, damit der Energieeintrag nicht zu hoch wird. Daraus ergeben sich Laser-Stoff-Wechselwirkungszeiten von wenigen µs. Diese Beziehungen werden im Rahmen einer Kooperation mit dem Physikalischen Institut eingehend untersucht. Dabei steht nicht die Wechselwirkung eines kompakten homogenen Werkstoffs mit Laserstrahlung, sondern vielmehr die Wechselwirkung einzelner Pulverpartikel bzw. einer losen Pulverschüttung mit dem Laserstrahl im Vordergrund. In der Kooperation der beiden Institute soll ein mesoskopisches Modell zur Beschreibung der Strahl-Pulver-Wechselwirkung entwickelt werden.


Weitere Informationen:
Prof. Dr.-Ing. Jürgen Heinrich
Institut für Nichtmetallische Werkstoffe
Tel. +49-(0)-5323-72 2354
Fax:+49-(0)-5323-72-3119
e-mail: heinrich@naw.tu-clausthal.de
Zehntnerstraße 2A
38678 Clausthal-Zellerfeld

Weitere Informationen finden Sie im WWW:

Jochen Brinkmann |

Weitere Berichte zu: Laserstrahl

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Fraunhofer Cluster of Excellence auf der K 2019: Frischer Wind für die Kreislaufwirtschaft von Kunststoffen
23.09.2019 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Reinigungsroboter saugt, wischt und leert Papierkörbe - Messe CMS – Cleaning Management Services
19.09.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer Cluster of Excellence auf der K 2019: Frischer Wind für die Kreislaufwirtschaft von Kunststoffen

Der weltweite Eintrag von Kunststoffen in die Umwelt muss gestoppt werden. Wie ein Kunststoff beschaffen sein muss, damit er kreislauffähig, schnell und rückstandlos abbaubar wird oder im besten Fall nicht in die Umwelt gelangt, ist Thema des Fraunhofer Cluster of Excellence »Circular Plastics Economy«. Auf der K 2019 präsentieren die beteiligten fünf Fraunhofer-Institute am Beispiel Kunststoff den Forschungsansatz, der Energie- und Materialströme einer Wertstoffkette in eine zirkuläre Wirtschaftsform überführen soll. Halle 7, Stand SC1.

350 Millionen Tonnen Kunststoff wurden 2017 weltweit produziert, rund 65 Millionen Tonnen davon in Europa. Kunststoff ist unverzichtbar für...

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte internationale Konferenz zur Erforschung von Gebärdensprachen an der Universität Hamburg

23.09.2019 | Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neues Analyse-Tool für Datenbankmanagementsysteme: Mowgli weist den Weg im Datenbanken-Dschungel

23.09.2019 | Informationstechnologie

Fraunhofer Cluster of Excellence auf der K 2019: Frischer Wind für die Kreislaufwirtschaft von Kunststoffen

23.09.2019 | Messenachrichten

Qualitätskontrolle in der Immunkommunikation: Chaperone erkennen unfertige Signalmoleküle im Immunsystem

23.09.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics