Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ACHEMA 2012 - Wärme speichern – kompakt und flexibel

01.06.2012
Biogasanlagen, Blockheizkraftwerke und Co. erzeugen nicht nur Strom, sondern auch Wärme. Doch diese verpufft im Gegensatz zum Strom meist ungenutzt. Eine neue Technologie soll dies künftig ändern: Sie ermöglicht es, die Wärme auf kleinstem Raum und über längere Zeiträume hinweg verlustfrei zu speichern und bei Bedarf zu nutzen.

Strom aus Biogas zu erzeugen, liegt im Trend. Noch effektiver wäre es allerdings, wenn man auch die dabei entstehende Wärme besser verwenden könnte. Denn etwa die Hälfte der im Brennstoff enthaltenen Energie wird als Wärme freigesetzt, die meist ungenutzt verpufft. Auch in Blockheizkraftwerken und vielen Industrieanlagen gehen große Mengen verloren.


Diese Zeolith-Kügelchen können Wasserdampf in ihren Poren binden – dabei entsteht Wärme. © Fraunhofer IGB

Das Problem: Die Wärme wird meist nicht zu dem Zeitpunkt gebraucht, an dem sie entsteht. Sie zu speichern, ist nur bedingt möglich. Bislang nutzt man dazu Wassertanks – sie können jedoch lediglich eine begrenzte Menge Wärme aufnehmen. Diese lässt sich zudem nur über kurze Zeiträume speichern, denn obwohl die Wassertanks isoliert sind, gibt das Wasser die Wärme im Laufe der Zeit an die Umgebung ab.

Einen neuartigen Wärmespeicher entwickeln Wissenschaftler vom Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart gemeinsam mit Industriepartnern, unter anderem der ZeoSys GmbH in Berlin. Die Besonderheit: Der Speicher kann drei- bis viermal so viel Wärme speichern wie Wasser – die Behälter müssten also nur etwa ein Viertel so groß sein wie Wasserspeicher. Zudem hält er die Wärme über lange Zeiträume ohne Verluste und kann auch bei Temperaturen deutlich über 100 Grad Celsius arbeiten.

Das Prinzip: Der Speicher enthält Zeolith-Kügelchen, altgriechisch für siedender Stein. Üblicherweise wird dieses Material als Ionentauscher eingesetzt, etwa zur Wasserenthärtung. Zeolithe sind porös, ihre Oberfläche ist daher enorm groß: Ein Gramm dieser Kugeln hat eine Oberfläche von bis zu 1000 Quadratmetern. Kommt das Material mit Wasserdampf in Berührung, bindet es diesen in den Poren – dabei entsteht Wärme. Zur Wärmespeicherung entfernt man das Wasser, indem man das Material unter Wärmezufuhr trocknet.

Die Energie ist dann gespeichert, aber – anders als bei Wasserspeichern – nicht dadurch, dass das Material fühlbar erwärmt ist. Gespeichert wird quasi das Potenzial, Wasser aufzunehmen und dabei Wärme freizusetzen – man spricht auch von sorptiven Wärmespeichern. Verhindert man, dass der getrocknete Zeolith mit Wasser in Berührung kommt, kann die Wärme ohne zeitliche Beschränkung gespeichert werden.

Mobile Versuchsanlage mit 750 Liter Speichervolumen

Das Prinzip an sich ist bereits bekannt. Eine breite technische Anwendung in Speichern gab es bislang jedoch nicht. »Wir haben das Prinzip aufgegriffen und technisch umgesetzt«, sagt Mike Blicker, Gruppenleiter Wärme- und Sorptionssysteme am IGB. Zunächst haben die Forscher in einem 1,5-Liter-Reaktor und später einem 15-Liter-Reaktor gezeigt, dass das Verfahren grundsätzlich funktioniert. »Wir haben die Prozess- und Verfahrenstechnik entwickelt und uns angeschaut, wie wir das Wärmespeicherprinzip technisch umsetzen können – also beispielsweise, wie ein Speicher aufgebaut werden muss und an welcher Stelle man Wärmetauscher, Pumpen und Ventile benötigt«, erläutert Blicker.

Die Materialtests wurden von den Entwicklungspartnern übernommen: Sie haben untersucht, welche der verschiedenen Zeolithe sich am besten eignen, wie groß die Zeolithkügelchen sein sollten und ob der Werkstoff auch nach vielen Speicherzyklen noch stabil ist. Die Wärme konnte viele tausend Male gespeichert werden, ohne dass das System größere Verschleißerscheinungen gezeigt hätte. Die Ergebnisse haben die Forscher auf die aktuelle Versuchsanlage übertragen: Sie umfasst 750 Liter Speichervolumen und befindet sich mit allen nötigen Zusatzaggregaten in einem transportablen Container. Somit können die Wissenschaftler die Anlage an unterschiedlichen Einsatzorten unter realistischen Bedingungen testen.

In einem weiteren Schritt werden die Forscher die Herstellungskosten reduzieren, die Anlage weiter optimieren und auf verschiedene Anforderungen hin anpassen. Ziel ist es, die Wärme sowohl in Industrieanlagen speichern zu können als auch in kleinen Blockheizkraftwerken, wie sie etwa in größeren Wohnhäusern genutzt werden. Im Vordergrund stehen zunächst die industriellen Anwendungen. »Ideal wäre eine Art Baukastensystem, aus dem man den Speicher je nach Anforderung zusammensetzen kann«, sagt Blicker. Auf der Messe ACHEMA vom 18. bis 22. Juni 2012 in Frankfurt zeigen die Forscher am Fraunhofer-Stand in Halle 9.2, Stand D64 an einem Modell, wie die sorptive Wärmespeicherung funktioniert.

Mike Blicker | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/juni/waerme-speichern-kompakt-und-flexibel.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Cobot-Assistenz in der Montage: Flexible Lösungen für den Mittelstand auf der Hannover Messe 2020
19.02.2020 | Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM

nachricht HMI Preview 2020: Neue Herzen für Brennstoffzellen: Fraunhofer IWU forscht an zukunftsfähiger Serienproduktion
12.02.2020 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics