Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Gestreifte" Nanopartikel dringen ohne Schaden in Zellen ein

10.06.2008
Unterschiedliche Mantelmoleküle und regelmäßige Anordnung als Schlüssel

Forscher des Massachusetts Institute of Technology (MIT) haben die ersten synthetischen Nanopartikel geschaffen, die in das Innere einer Zelle eindringen können, ohne ein Loch in ihre schützende Membran zu reißen.

Sowohl für die gezielte Verabreichung von Medikamenten direkt in die Zelle als auch für die Erklärung biologischer Prozesse im Körper könne die Invention von großem Nutzen sein, so die Forschergruppe um Francesco Stellacci. Schlüssel zu dieser Fähigkeit ist das Streifenmuster der kreierten Partikel.

Die Forscher haben Goldnanopartikel mit einem Band zweier unterschiedlicher Moleküle ummantelt. Im Gegensatz zu Nanopartikeln, die recht strukturlos mit den gleichen Materialien umgeben sind, könnten diese Partikel schnell in die Zelle gelangen. Die Ergebnisse der 2004 begonnenen Forschung schildert das Team in der Online-Ausgabe des Wissenschaftsmagazins Nature Materials.

... mehr zu:
»Nanopartikel »Zelle »Zellmembran

"Wir haben das erste synthetische Material erzeugt, dass durch eine Zellmembran dringen kann, ohne sie zu verletzen. Und wir haben herausgefunden, dass eine bestimmte Ordnung im Nanometer-Bereich nötig ist, um diese Fähigkeit zu ermöglichen", berichtet Stellacci vom Department für Materialwissenschaften und Ingenieurwesen. Bereits im Jahre 2004 hatte der Wissenschaftler gestreifte Nanopartikel hergestellt. "Zu dieser Zeit haben wie bemerkt, dass sie mit Proteinen in interessanter Art und Weise interagieren", sagt Stellacci. "Und wir fragten uns, könnten sie auch mit Zellen interagieren?" Vier Jahre später können Stellacci und seine Kollegen diese Frage mit einem eindeutigen "Ja" beantworten.

Wenn die Zellmembran fremde Objekte wie einen Nanopartikel bemerkt, schließt sie diesen normalerweise in eine Art "Extra-Blase" innerhalb der Zelle ein, die dann ausgeschieden werden kann. An die Nanopartikel angefügte Substanzen, beispielsweise ein medizinischer Wirkstoff, würde deshalb nie ihren Wirkort, die inneren flüssigen Bestandteile der Zelle, das Zytosol, erreichen. Anders sieht es da bei dem gestreiften Goldnanopartikel des MIT aus. Dies kann die Zellmembran direkt durchdringen und ihre Fracht im Zytosol abladen. Studien-Co-Autor Darrell Irvine aus dem Bereich Gewebstechnik vergleicht diesen Vorgang mit dem Durchstechen von Seifenblasen: "Wenn man einen Seifenfilm hat und ihn mit einem Stab anstößt, wird man ihn zum platzen bringen. Wenn man aber den Stab vorher ebenfalls mit Seife überzieht, gelangt er durch den Seifenfilm ohne ihn zu zerplatzen, denn er ist mit dem gleichen Material umgeben." Ebenso hätten die ummantelten Nanopartikel ähnliche, wenn auch nicht identische Eigenschaften wie die Zellmembran.

Über den praktischen Nutzen für die Medikamentengabe hinaus - das Team nutze die Partikel, um fluoreszierende Marker für bildgebende Verfahren in Zellen zu transportieren - könnte mithilfe der Kleinstteilchen möglicherweise auch besser geklärt werden, wie biologische Materialien wie Peptide in Zellen gelangen können. "Wir könnten die neuen Nanopartikel nutzen, um mehr über ihre biologischen Pendants zu lernen", meint Stellacci: "Könnten sie vielleicht Gegenstücke zum biologischen System sein?"

Claudia Misch | pressetext.austria
Weitere Informationen:
http://www.mit.edu

Weitere Berichte zu: Nanopartikel Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern
20.11.2019 | Max-Planck-Institut für Polymerforschung

nachricht Mit künstlicher Intelligenz zum besseren Holzprodukt
20.11.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics