"Gestreifte" Nanopartikel dringen ohne Schaden in Zellen ein

Forscher des Massachusetts Institute of Technology (MIT) haben die ersten synthetischen Nanopartikel geschaffen, die in das Innere einer Zelle eindringen können, ohne ein Loch in ihre schützende Membran zu reißen.

Sowohl für die gezielte Verabreichung von Medikamenten direkt in die Zelle als auch für die Erklärung biologischer Prozesse im Körper könne die Invention von großem Nutzen sein, so die Forschergruppe um Francesco Stellacci. Schlüssel zu dieser Fähigkeit ist das Streifenmuster der kreierten Partikel.

Die Forscher haben Goldnanopartikel mit einem Band zweier unterschiedlicher Moleküle ummantelt. Im Gegensatz zu Nanopartikeln, die recht strukturlos mit den gleichen Materialien umgeben sind, könnten diese Partikel schnell in die Zelle gelangen. Die Ergebnisse der 2004 begonnenen Forschung schildert das Team in der Online-Ausgabe des Wissenschaftsmagazins Nature Materials.

„Wir haben das erste synthetische Material erzeugt, dass durch eine Zellmembran dringen kann, ohne sie zu verletzen. Und wir haben herausgefunden, dass eine bestimmte Ordnung im Nanometer-Bereich nötig ist, um diese Fähigkeit zu ermöglichen“, berichtet Stellacci vom Department für Materialwissenschaften und Ingenieurwesen. Bereits im Jahre 2004 hatte der Wissenschaftler gestreifte Nanopartikel hergestellt. „Zu dieser Zeit haben wie bemerkt, dass sie mit Proteinen in interessanter Art und Weise interagieren“, sagt Stellacci. „Und wir fragten uns, könnten sie auch mit Zellen interagieren?“ Vier Jahre später können Stellacci und seine Kollegen diese Frage mit einem eindeutigen „Ja“ beantworten.

Wenn die Zellmembran fremde Objekte wie einen Nanopartikel bemerkt, schließt sie diesen normalerweise in eine Art „Extra-Blase“ innerhalb der Zelle ein, die dann ausgeschieden werden kann. An die Nanopartikel angefügte Substanzen, beispielsweise ein medizinischer Wirkstoff, würde deshalb nie ihren Wirkort, die inneren flüssigen Bestandteile der Zelle, das Zytosol, erreichen. Anders sieht es da bei dem gestreiften Goldnanopartikel des MIT aus. Dies kann die Zellmembran direkt durchdringen und ihre Fracht im Zytosol abladen. Studien-Co-Autor Darrell Irvine aus dem Bereich Gewebstechnik vergleicht diesen Vorgang mit dem Durchstechen von Seifenblasen: „Wenn man einen Seifenfilm hat und ihn mit einem Stab anstößt, wird man ihn zum platzen bringen. Wenn man aber den Stab vorher ebenfalls mit Seife überzieht, gelangt er durch den Seifenfilm ohne ihn zu zerplatzen, denn er ist mit dem gleichen Material umgeben.“ Ebenso hätten die ummantelten Nanopartikel ähnliche, wenn auch nicht identische Eigenschaften wie die Zellmembran.

Über den praktischen Nutzen für die Medikamentengabe hinaus – das Team nutze die Partikel, um fluoreszierende Marker für bildgebende Verfahren in Zellen zu transportieren – könnte mithilfe der Kleinstteilchen möglicherweise auch besser geklärt werden, wie biologische Materialien wie Peptide in Zellen gelangen können. „Wir könnten die neuen Nanopartikel nutzen, um mehr über ihre biologischen Pendants zu lernen“, meint Stellacci: „Könnten sie vielleicht Gegenstücke zum biologischen System sein?“

Media Contact

Claudia Misch pressetext.austria

Weitere Informationen:

http://www.mit.edu

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und…

Rotation eines Moleküls als „innere Uhr“

Mit einer neuen Methode haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik die ultraschnelle Fragmentation von Wasserstoffmolekülen in intensiven Laserfeldern detailliert untersucht. Dabei nutzten sie die durch einen Laserpuls angestoßene Rotation…

Auf dem Weg zur fischfreundlichen Wasserkraft

In dem europaweiten Projekt „FIThydro“ unter Leitung der Technischen Universität München (TUM) haben Forscherinnen und Forscher in Zusammenarbeit mit Industriepartnern bestehende Wasserkraftwerke untersucht. Diese Ergebnisse nutzten sie, um neue Methoden…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close