Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

23.10.2019

Erstmals konnten ETH-​Forscherinnen und Forscher die Korrosion von Magnesiumlegierungen für biomedizinische Anwendungen auf der Nanoskala beobachten. Dies ist ein wichtiger Schritt, um bessere Vorhersagen darüber zu treffen, wie schnell Implantate im Körper abgebaut werden und so massgeschneiderte Implantatwerkstoffe entwickelt werden können.

Magnesium und seine Legierungen halten vermehrt Einzug in die Medizin: einerseits als Material für Implantate in der Knochenchirurgie wie Schrauben oder Platten, andererseits als Material für Stents, um bei kardiovaskulären Eingriffen verengte Herzkranzgefässe aufzuweiten.


Mithilfe modernster Technik konnten ETH-​Forschende einen bisher nicht dokumentierten Entlegierungsmechanismus in Magnesiumlegierungen beobachten.

Laboratorium für Metallphysik und Technologie / ETH Zürich

Das Leichtmetall hat gegenüber herkömmlichen Implantaten aus Edelstahl, Titan oder Polymeren den Vorteil, dass es bioresorbierbar ist. Somit ist keine zweite Operation nötig, um die Implantate wieder aus dem Körper von Patienten zu entfernen. Magnesium fördert zudem das Knochenwachstum, was die Heilung von Knochenbrüchen aktiv unterstützt.

Reines Magnesium eignet sich allerdings nicht für solche chirurgischen Anwendungen, da es zu weich ist. Um die nötige Festigkeit zu erreichen, müssen daher Legierungselemente hinzugefügt werden. Üblicherweise sind dies Elemente der Seltenen Erden wie Yttrium und Neodym. Da diese jedoch körperfremd sind, können sie sich beim Abbau der Implantate in Organen ansammeln – mit unzureichend verstandenen Folgen. Insbesondere für Kinder sind solche Implantate deshalb ungeeignet.

Neue Legierungen mit Zink und Kalzium

Forscherinnen und Forscher des Labors für Metallphysik und Technologie von ETH-​Professor Jörg Löffler haben daher eine neue Familie von Legierungen entwickelt, welche nebst Magnesium ausschliesslich die Elemente Zink und Kalzium enthalten. Deren Anteil ist in diesen Legierungen mit Absicht sehr gering gewählt und liegt unterhalb von einem Prozent.

Wie Magnesium sind auch diese Elemente biokompatibel und können vom menschlichen Körper resorbiert werden. Je nach Herstellungsverfahren bilden sich in den neu entwickelten Legierungen Ausscheidungen aus, die aus den drei Legierungselementen zusammengesetzt sind.

Diese Ausscheidungen sind unterschiedlich häufig und verschieden gross, und messen oft nur wenige Dutzend Nanometer. Für gute mechanische Eigenschaften sind diese jedoch essentiell und beeinflussen möglicherweise die Korrosionsgeschwindigkeit des Materials.

Doch noch steht dem breiten chirurgischen Einsatz dieser körperverträglichen Magnesiumlegierungen ein Hindernis im Weg: Die Forschung weiss zu wenig über die Mechanismen, mit denen die Metallteile im Körper unter sogenannten physiologischen Bedingungen abgebaut werden. Deswegen sind auch brauchbare Voraussagen darüber, wie lange ein solches Implantat im Körper verbleibt, bisher kaum möglich.

Entlegierungsmechanismus erstmals dokumentiert

Mittels analytischer Transmissionselektronenmikroskopie (TEM) konnten Jörg Löffler und seine Kollegen Martina Cihova und Robin Schäublin nun die strukturellen und chemischen Veränderungen von Magnesiumlegierungen unter simulierten physiologischen Bedingungen ab weniger Sekunden bis hin zu Stunden im Detail beobachten, und zwar in einer bisher unerreichten Auflösung von einigen Nanometern. Die Resultate der Studie wurden vor kurzem in der Fachzeitschrift «Advanced Materials» veröffentlicht.

Mithilfe dieser modernen Technik, die an der ETH Zürich durch das Kompetenzzentrum «ScopeM» zur Verfügung steht, konnten die Forschenden einen bisher nicht beobachteten Entlegierungsmechanismus («Dealloying») dokumentieren, der den Abbau der Ausscheidungen in der Magnesiummatrix massgeblich bestimmt.

Sie konnten fast in Echtzeit beobachten, wie aus den Ausscheidungen während ihres Kontakts mit simulierter Körperflüssigkeit Kalzium-​ und Magnesiumionen austreten, wohingegen Zinkionen zurückbleiben und sich anreichern. Dadurch verändert sich die chemische Zusammensetzung der Ausscheidungen kontinuierlich. Dies führt bei den Ausscheidungen auch dazu, dass sich ihre elektrochemische Aktivität dynamisch verändert und sie damit den Materialabbau insgesamt beschleunigen.

«Diese Erkenntnis stösst das bisherige Dogma um. Bisher nahm die Forschung nämlich an, dass die chemische Zusammensetzung der Ausscheidungsphasen in Magnesiumlegierungen während der Korrosion unverändert bleibt», sagt Löffler. Diese Annahme habe dazu geführt, dass die meisten Voraussagen über die Dauer des Abbaus falsch waren. «Der von uns beobachtete Mechanismus scheint universell zu sein und wir gehen davon aus, dass er sowohl in anderen Magnesiumlegierungen als auch in anderen aktiven Materialien mit intermetallischen Ausscheidungen auftritt», ergänzt Martina Cihova, Doktorandin von Jörg Löffler und Erstautorin der Studie.

Dank der neuen Erkenntnisse ist es nun möglich, Magnesiumlegierungen so zu designen, dass deren Abbauverhalten im Körper besser vorausgesagt und genauer kontrolliert werden kann. Dies ist essenziell, weil Magnesiumimplantate im Körper von Kindern wesentlich schneller abgebaut werden können als von Erwachsenen. Die Abbaurate von Magnesiumlegierungen für Stents sollte zudem erheblich langsamer sein als die für Knochenplatten oder -​schrauben. «Mit dem Wissen über das detaillierte Korrosionsverhalten sind wir dem Ziel massgeschneiderter Legierungen für unterschiedliche Patienten und medizinische Anwendungen einen entscheidenden Schritt näher gekommen», sagt Cihova.

Wissenschaftliche Ansprechpartner:

Prof. Jörg Löffler, Laboratorium für Metallphysik und Technologie, ETH Zürich, +41 44 632 25 65, joerg.loeffler@mat.ethz.ch

Originalpublikation:

M. Cihova, P. Schmutz, R. Schäublin, J. F. Löffler, Biocorrosion Zoomed In: Evidence for Dealloying of Nanometric Intermetallic Particles in Magnesium Alloys. Adv. Mater. 31 (42), 1903080 (2019). DOI:10.1002/adma.201903080

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/10/magnesiumlegie...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: ETH Implantate Kalzium Magnesiumlegierung Metallphysik Nanoskala Stents Zink

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Verbundene Nanodreiecke zeigen Weg zu magnetischen Kohlenstoff-Materialien
02.06.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems
29.05.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sehvermögen durch Gentherapie wiederherstellen

Neuer Ansatz zur Behandlung bislang unheilbarer Netzhautdegeneration

Menschen verlassen sich in erster Linie auf ihr Augenlicht. Der Verlust des Sehvermögens bedeutet, dass wir nicht mehr lesen, Gesichter erkennen oder...

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Kleines Protein, große Wirkung

In Meningokokken spielt das unscheinbare Protein ProQ eine tragende Rolle. Zusammen mit RNA-Molekülen reguliert es Prozesse, die für die krankmachenden Eigenschaften der Bakterien von Bedeutung sind.

Meningokokken sind Bakterien, die lebensbedrohliche Hirnhautentzündungen und Sepsis auslösen können. Diese Krankheitserreger besitzen ein sehr kleines Protein,...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schutz der neuronalen Architektur

05.06.2020 | Biowissenschaften Chemie

Wie das Gehirn unser Sprechen kontrolliert - Beide Gehirnhälften leisten besonderen Beitrag zur Sprachkontrolle

05.06.2020 | Interdisziplinäre Forschung

Akute myeloische Leukämie: Größerer Entscheidungsspielraum bei Therapie-Start

05.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics