Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tintenstrahler druckt Blutgefäß-Vorläufer

18.01.2012
Tropfen biologischer Tinte verleihen Zellen 3D-Anordnung

Die künstliche Züchtung lebender Gewebe - meist als "Tissue Engineering" bezeichnet - gilt als ein Hoffnungsträger der Medizin, etwa für den Ersatz beschädigter Zellen oder für die Medikamentenforschung. Einen Schritt in Richtung einer künftigen Realisierung ist Forschern vom Ecole Polytechnique Federale de Lausanne (EPFL) http://epfl.ch gelungen.

Wie sie in der Zeitschrift "Advanced Materials" berichten, konnten sie biologischen Materialien mittels einer speziellen Tintenstrahl-Drucktechnik eine 3D-Struktur verleihen, die jener von kapillaren Blutgefäßen entspricht.

"Werden nach einem Unfall oder einer Erkrankung Organe oder andere Teile des menschlichen Körpers ersetzt, braucht man hohle Strukturen, durch die man Flüssigkeiten wie etwa Blut, Nährstoffe und Proteine pumpen und Abfallstoffe wieder abtransportieren kann. Diese Strukturen können durch spezielle Tintenstrahltechnik künstlich erzeugt werden", erklärt Jürgen Brugger, Leiter des EPFL-Labors für Microsysteme, im pressetext-Interview.

Tinte steuert Zellverhalten

Damit sie ein Gewebe bilden, brauchen Zellen Signale, die ihr erforderliches Verhalten wie etwa Proliferation, Migration, Differenzierung oder programmierten Zelltod anregen. Bei natürlichen Zellen stammen diese Signale von Molekülen der Extrazellularmatrix (ECM). Nach einer grundlegenden Untersuchung dieser Matrix und deren Kommunikation mit den Zellen konnten die Forscher diese nachbauen - in Form eines Gels, das als "biologische Tinte" dient.

Dieses Gel kann durch Tintenstrahl-Drucktechnik zur Herstellung feingliedriger Kanäle aus Biomaterial verwendet werden. Ein Drucker sendet Tropfen davon auf ein mit Kalzium durchtränktes Substrat. Dieses geliert beim Auftreffen rasch und bildet eine dreidimensionale Form. Wie das Ergebnis aussieht, hängt von der jeweiligen Programmierung ab. Die Lausanner Forscher nahmen als Vorgabe ein kapillares Blutgefäß.

Tropfen bilden 3D-Struktur

Für einige der bisherigen Probleme fand sich nun eine Lösung. Brugger vergleicht das Verfahren mit einer Kerze, deren Wachs auf einen Tisch tropft. "Treffen Tropfen zeitlich und räumlich unmittelbar hintereinander auf, verschmelzen sie miteinander und die 3D-Struktur geht verloren. Damit diese bestehen bleibt, muss zwischen den Tropfen zunächst eine Lücke bleiben, die erst Sekunden später nach der Gelierung aufgefüllt wird."

Dass die Technik funktioniert, beweist die Produktion einer Röhre aus weichem Biomaterial, durch die bereits Flüssigkeiten geschleust wurden. Sobald das Tissue Engineering auch in anderen Bereichen weiter fortgeschritten ist, könnten derartige Röhrchen ein Gerüst bilden, um das lebende Zellen ansiedelt werden, erklärt der Experte. "Alles weitere bleibt dann dem natürlichen Wachstum überlassen, bis man das künstlich geschaffene Material abbauen kann."

Johannes Pernsteiner | pressetext.redaktion
Weitere Informationen:
http://epfl.ch

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht Nanopartikel aus Kläranlagen - vorläufige Entwarnung
02.05.2018 | Universität Siegen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics