Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkommunikation auf Glasfaserbasis - Interferenz mit Lichtquanten unabhängiger Quellen

23.10.2018

Wissenschaftler arbeiten weltweit an der absolut abhörsicheren Kommunikation – der sogenannten Quantenkommunikation. Für große Übertragungsdistanzen basiert die Technik auf Signalverstärkern, bei der die Interferenz (Überlagerung) von zwei Photonen, also zweier einzelner Lichtteilchen, eine zentrale Rolle spielt. Physiker der Universität Stuttgart und der Universität des Saarlandes konnten zeigen, dass man mit Hilfe von Kristallen einzelne Lichtteilchen manipulieren und trotzdem deren entscheidende quantenmechanische Natur beobachten kann. Diese Manipulation ist nötig, um Information mithilfe der Glasfasertechnik zu übertragen und so ein flächendeckendes Quantennetzwerk aufzubauen.

Ein Quantennetzwerk basiert auf der Übertragung einzelner Photonen, die als „mobile“ Quantenbits dienen. Die Wahrscheinlichkeit, dass ein solches Lichtteilchen beim Empfänger ankommt, sinkt grundsätzlich mit steigender Glasfaserstrecke.


Emission einzelner Lichtteilchen von räumlich getrennten Quantenpunkten. Die Lichtteilchen werden mit Hilfe von Kristallen und starkem Laserlicht in ihrer Wellenlänge verändert.

Universität Stuttgart/Kolatschek

Um Daten über Distanzen von wenigstens 10 bis 100 km austauschen zu können, müssen die Lichtteilchen deshalb eine bestimmte Wellenlänge besitzen. Doch selbst dann sind für ein kontinentales Netzwerk Stationen nötig, in denen das Signal wiederholt bzw. aufbereitet wird. Diese, sogenannten Quantenrepeater (englisch: „Wiederholstation“) unterscheiden sich allerdings grundlegend von Signalverstärkern der klassischen Kommunikationstechnik.

Quantenrepeater müssen die Teilstrecken mithilfe von Quanteneffekten überbrücken. Sie basieren auf der Interferenz einzelner Lichtteilchen, die von räumlich voneinander entfernten, unabhängigen Emittern ausgesendet werden.

„In unserem Fall verwenden wir Halbleiternanostrukturen als Emitter der Lichtteilchen. Sie haben den Vorteil, dass sie mit rekordverdächtiger Rate Photonen aussenden“, erklärt Jonas Weber, der im Projekt für die Erzeugung und Interferenz der Photonen zuständig war. „Das ist wichtig für eine schnelle Datenübertragung“, so der Doktorand am Institut für Halbleiteroptik und Funktionelle Grenzflächen (IHFG) der Universität Stuttgart.

Die gängigen Nanostrukturen, auch Quantenpunkte genannt, senden jedoch meist Lichtteilchen aus, deren Wellenlänge nicht auf die Übertragung mit Glasfasern angepasst ist. Um die vielen Vorzüge von Quantenpunkten dennoch nutzbar zu machen, wurden von der Arbeitsgruppe Quantenoptik um Prof. Christoph Becher der Universität des Saarlandes zwei unabhängige Quanten-Frequenzkonverter aufgebaut.

Diese Konverter enthalten spezielle Kristalle. Überlagert man in ihnen die einzelnen Lichtteilchen mit starkem Laserlicht, so kann deren Wellenlänge manipuliert werden.

„Erst dann können die Lichtteilchen über die angepeilten 10-100 km Glasfaserstrecke übertragen werden. Ohne diese Vorbereitung müsste man in 1-km-Abständen Signalverstärker aufbauen. Das wäre wohl nicht realisierbar“, meint Benjamin Kambs, der als Doktorand in der Arbeitsgruppe von Prof. Becher maßgeblich an der Entwicklung der beiden Frequenzkonverter beteiligt war.

Die Physiker konnten nun zeigen, dass man trotz der nötigen Manipulation den elementaren Quanteneffekt noch beobachten kann. So wurden die einzelnen Lichtteilchen durch eine 2-km Glasfaserstrecke gesendet und danach erfolgreich zur Interferenz gebracht. Das ist nicht selbstverständlich angesichts der im Allgemeinen extrem fragilen Natur von Quantenzuständen.

„Dieses sehr komplexe Experiment konnte nur aufgrund der langjährigen Kollaboration der Universitäten Stuttgart und des Saarlandes und nur in sehr guter Teamarbeit erfolgreich sein. Es zeigt, dass Halbleiterquantenpunkte in Kombination mit Quantenfrequenzkonversion eine veritable Plattform für Quantenrepeater darstellen.“, so der Leiter des IHFG, Prof. Peter Michler.

Die Forschungsergebnisse wurden nun im Fachmagazin Nature Nanotechnology veröffentlicht.*

Wissenschaftliche Ansprechpartner:

Prof. Dr. Peter Michler, Universität Stuttgart, Institut für Halbleiteroptik und Funktionelle Grenzflächen, Tel.:+49 (0)711/685-64660, p.michler@ihfg.uni-stuttgart.de

Originalpublikation:

Originalpublikation: J. H. Weber, B. Kambs et al., Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters, Nature Nanotechnology, 2018 https://doi.org/10.1038/s41565-018-0279-8

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein superschneller «Lichtschalter» für künftige Autos und Computer
18.11.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher machen das Netz schlauer
18.11.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: With artificial intelligence to a better wood product

Empa scientist Mark Schubert and his team are using the many opportunities offered by machine learning for wood technology applications. Together with Swiss Wood Solutions, Schubert develops a digital wood-selection- and processing strategy that uses artificial intelligence.

Wood is a natural material that is lightweight and sustainable, with excellent physical properties, which make it an excellent choice for constructing a wide...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit alten Buchenwäldern in Europa regionale Entwicklung stärken

20.11.2019 | Agrar- Forstwissenschaften

Zelltod oder Krebswachstum: eine Frage des Zusammenhalts!

20.11.2019 | Medizin Gesundheit

Einblick in die dunkle Materie des Genoms

20.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics