Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronische Haut zeigt Weg nach Norden - HZDR-Forscher verleihen Menschen mit Sensoren Magnetsinn

15.11.2018

Während viele Vögel das Magnetfeld der Erde zur Orientierung einsetzen können, fehlt Menschen diese nützliche Fähigkeit – bisher zumindest. Denn Forscher des HZDR haben einen elektronischen Magnetsensor entwickelt, der so empfindlich ist, dass er nur über die Interaktion mit dem Erdmagnetfeld die Bewegungen eines Körpers im Raum bestimmen kann. Da der Sensor hauchdünn und flexibel biegbar ist, lässt er sich leicht auf der Haut tragen, was sie so gewissermaßen in einen Kompass verwandelt. Diese „elektronische Haut“ könnte nicht nur bei Orientierungsproblemen helfen, sondern auch den Zugang zur virtuellen Realität vereinfachen. Die Ergebnisse erscheinen in der Zeitschrift Nature Electronics.

Eine einfache Handbewegung nach links: Und schon setzt sich der virtuelle Panda auf dem Monitor zum unteren linken Rand in Bewegung. Als die Hand nach rechts schwenkt, vollführt das schwarz-weiße Tier eine Drehung um 180 Grad.


Nur eine hauchdünne, goldene Folie auf dem Mittelfinger: Das ist alles, was Dresdner Physiker brauchen, um einen virtuellen Panda mit Hilfe des Erdmagnetfelds zu steuern.

HZDR / G.S. Cañón Bermúdez

Die Demonstration erinnert ein bisschen an eine berühmte Szene aus dem Film Minority Report, in der Hauptdarsteller Tom Cruise nur mit Hilfe von Gesten einen Computer steuert.

Was vor 16 Jahren noch wie Science-Fiction aussah, konnten die Forscher um Dr. Denys Makarov vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in die Realität umsetzen. Um den Weg des Pandas zu bestimmen, brauchen sie aber keine klobigen Handschuhe, sperrigen Brillen oder aufwendige Kamerasysteme. Ihnen genügt eine nur wenige Tausendstel Millimeter dünne Polymerfolie an einem Finger – und das Magnetfeld der Erde.

„Auf der Folie haben wir elektronische Magnetsensoren aufgebracht, die kleinste geomagnetische Felder detektieren können“, erzählt Erstautor der Studie Gilbert Santiago Cañón Bermúdez.

„Wir reden von 40 bis 60 Mikrotesla – das ist mehr als 1000-mal schwächer als ein üblicher Magnet am Kühlschrank und entspricht in etwa dem Erdmagnetfeld.“

Dadurch konnten die Wissenschaftler zum ersten Mal zeigen, dass das natürliche geomagnetische Feld ausreicht, um virtuelle Objekte berührungslos zu steuern. Bei dem Vorgängermodell mussten die Physiker noch auf einen externen Permanentmagneten zurückgreifen: „Indem sie die Position eines Körpers, beispielsweise einer Hand, in Verbindung zum Erdmagnetfeld setzen, können unsere Sensoren die Bewegungen aufzeichnen, was es uns erlaubt, sie zu digitalisieren und in die virtuelle Welt zu übertragen.“

Wie ein normaler Kompass
Das Prinzip hinter den Sensoren, die aus hauchdünnen Streifen des Metalls Permalloy bestehen, beruht auf dem sogenannten anisotropen magnetoresistiven Effekt, wie Cañón Bermúdez erläutert:

„Das heißt, dass sich, abhängig von der Orientierung zu einem äußeren Magnetfeld, der elektrische Widerstand dieser Schichten ändert. Um sie speziell auf das Erdmagnetfeld auszurichten, haben wir diese ferromagnetischen Streifen in einem Winkel von 45 Grad mit einem leitfähigen Material, in unserem Fall Goldplättchen, belegt. Der Strom kann deshalb nur in diesem Winkel fließen, wodurch die Sensoren am empfindlichsten in der Nähe besonders kleiner Magnetfelder sind. Die Spannung ist also am stärksten, wenn die Sensoren auf Norden, und am schwächsten, wenn sie auf Süden ausgerichtet sind.“

Bei Versuchen in der freien Natur konnten die Forscher belegen, dass ihre Konfiguration funktioniert.

Den Sensor am Zeigefinger aufgeklebt, orientierte sich die Testperson von Norden über Westen nach Süden und zurück – was dazu führte, dass die elektrische Spannung dementsprechend fiel beziehungsweise wieder anstieg. Die so angezeigten Himmelsrichtungen stimmten mit einem gewöhnlichen Kompass, der als Vergleich diente, überein.

„Dies zeigt, dass wir erstmals einen tragbaren Sensor entwickeln konnten, der die Funktionsweise eines normalen Kompasses reproduzieren und den Menschen einen künstlichen Magnetsinn verleihen kann“, schätzt Bermúdez ein. Das ist aber noch nicht alles. Denn den Physikern gelang es darüber hinaus, das Prinzip in die virtuelle Realität zu übertragen. Hier konnten sie bei Panda3D, einer Software für die Produktion von Computerspielen, einen digitalen Panda allein über ihre Magnetsensoren steuern.

Bei den Versuchen entsprach der Norden einer Bewegung nach links, der Süden wiederum nach rechts. Befand sich nun die Hand auf der linken Seite, also im magnetischen Norden, setzte sich der Panda in der virtuellen Welt dorthin in Bewegung. Schwenkte sie aber in die entgegengesetzte Richtung, machte auch das Tier eine Kehrtwende.

„Die Detektion des Magnetfelds aus der realen Welt ließ sich direkt in den virtuellen Bereich übersetzen“, fasst Denys Makarov zusammen. Da die Sensoren starke Verbiegungen und Verkrümmungen aushalten, ohne Funktionalität einzubüßen, sehen die Forscher großes Potential für ihre Entwicklung – nicht nur als Zugang zur virtuellen Realität.

„Damit ließen sich zum Beispiel genauer die Effekte eines Magnetsinnes auf Menschen untersuchen, ohne auf umständliche experimentelle Installationen, die oft die Resultate verzerren, zurückgreifen zu müssen“, gibt Gilbert Santiago Cañón Bermúdez einen Ausblick.

Publikation: G.S. Cañón Bermúdez, H. Fuchs, L. Bischoff, J. Fassbender, D. Makarov: Electronic-skin compasses for geomagnetic field driven artificial magnetoception and interactive electronics, in Nature Electronics, 2018 (DOI: 10.1038/s41928-018-0161-6)

Weitere Informationen:
Dr. Denys Makarov | Gilbert Santiago Cañón Bermúdez
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3273 | -2572
E-Mail: d.makarov@hzdr.de | g.canon-bermudez@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Es entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Denys Makarov | Gilbert Santiago Cañón Bermúdez
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3273 | -2572
E-Mail: d.makarov@hzdr.de | g.canon-bermudez@hzdr.de

Originalpublikation:

G.S. Cañón Bermúdez, H. Fuchs, L. Bischoff, J. Fassbender, D. Makarov: Electronic-skin compasses for geomagnetic field driven artificial magnetoception and interactive electronics, in Nature Electronics, 2018 (DOI: 10.1038/s41928-018-0161-6)

Weitere Informationen:

https://www.hzdr.de/presse/sensor_erdmagnetfeld

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Das kleine 1x1 des Plätzchenbackens mit der Software AutoNester
17.12.2018 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Rittal: Das sind die IT- und Datacenter-Trends 2019
17.12.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kommunikation zwischen neuronalen Netzwerken

17.12.2018 | Biowissenschaften Chemie

Beim Phasenübergang benutzen die Elektronen den Zebrastreifen

17.12.2018 | Physik Astronomie

Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente

17.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics