Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Verlockend-spannendes Konzept": Jülicher erforschen neue Computerspeicher

11.04.2006

Zukünftige Computerspeicher sollen alles können: große Datenmengen speichern, schnell schalten und auch ohne Stromzufuhr die Daten sicher bewahren. Wie das alles in einem System vereint werden könnte, hat Prof. Kristof Szot und sein Jülicher Team nun in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature Materials aufgezeigt. Mit der Spitze eines Rastersondenmikroskops kann er die Leitfähigkeit von oxidischen Materialien im Nanometerbereich um viele Größenordnungen manipulieren. Im begleitenden Kommentar im gleichen Magazin sagt Angus Kingon von der North Carolina State University: "Dieses verlockend-spannende Konzept ist die aufregende Grundlage für eine mögliche neue Speichertechnologie."

Hintergrundinformationen zur aktuellen Veröffentlichung in Nature Materials:

Bereits in den 70er-Jahren des letzten Jahrhunderts wurde beobachtet, dass bestimmte Übergangsmetalloxide nach einer sog. Formierung, beispielsweise einer thermischen Vorbehandlung in reduzierenden Atmosphären, einen schaltbaren Widerstandseffekt zeigen. Die Gruppe um Georg Bednorz am IBM-Forschungslabor in Zürich, der zusammen mit seinem Kollegen Alex Müller den Nobelpreis für die Entdeckung der Hochtemperatursupraleitung in Oxiden erhalten hatte, brachte Ende der 90er-Jahre den Effekt als mögliches Prinzip für zukünftige Computerspeicher auf. Es blieb jedoch bis heute ungeklärt, wie das Widerstandsschalten abläuft und mit welchen Struktureigenschaften es im oxidischen Material einhergeht. Professor Kristof Szot am Institut für Festkörperforschung des Forschungszentrums Jülich hat in den letzten Jahren eine besondere Variante der sogenannten Rastersondenmikroskopie entwickelt, die es ihm erlaubt, extrem kleine Ströme mit einer außerordentlich großen Ortsauflösung an atomar glatten Oberflächen aufzunehmen. Er wandte nun seine Methode auf schaltende Oxide, wie z. B. das von Bednorz vorgeschlagene Strontiumtitanat, an, um dem physikalisch-chemischen Mechanismus des Effekts auf die Spur zu kommen. Wie in der Aprilausgabe der renommierten Fachzeitschrift Nature Materials berichtet wird, konnte er nachweisen, dass die Leitfähigkeit nach dem Formieren eines Einkristalls (und in gleicher Weise von dünnen Schichten) aus Strontiumtitanat nicht homogen auf der gesamten Oberfläche auftritt. Vielmehr ist sie auf ausgedehnte Gitterdefekte, insbesonders so genannte Versetzungen im Kristallgitter des Oxids, beschränkt. Die Leitfähigkeit zwischen dem Ausgang einer Versetzung an der Oberfläche und einer defektfreien Stelle nur einen Nanometer (entspricht dem 30.000stel eines Haardurchmesser) davon entfernt kann um viele Größenordnungen variieren. Und er konnte mit Hilfe einer positiven Spannung, die er an die Rastersondenspitze anlegte, die hohe Leitfähigkeit dieses Versetzungsausgangs wieder abschalten. Negative und positive Spannungen oberhalb eines Grenzwertes von etwa 2 V konnten die Leitfähigkeit der Versetzung beliebig ein- und ausschalten. Dies war offensichtlich genau der gleiche Effekt, den andere Forscher mit großen Deckelektroden als Widerstandsschaltern beobachtet hatten.

Bei der Formierung der Oxide wird offenbar zunächst eine winzig kleine Menge Sauerstoff entlang der Versetzungen in dem Kristall ausgebaut. Dadurch wird die Leitfähigkeit des Materials erhöht. Wie Gustav Bihlmeyer in dem Artikel mit theoretischen Rechnungen auf der Basis quantenmechanischer Simulationen nachweisen konnte, bleibt die Leitfähigkeit in der Tat stark lokalisiert - so wie es experimentell beobachtet wurde. Das Schalten kann man offenbar als elektrochemischen Effekt auf der Nanoskala verstehen (also als einen Nanobatterie-Effekt), bei dem einige Sauerstoffionen verschoben werden und durch eine lokale Oxidation bzw. Reduktion der Versetzung in der Nähe der Oberfläche der Zugang der Rastersondenspitze zum leitenden Innern der Versetzung unterbrochen oder wieder hergestellt wird. Aufgrund der sehr kurzen Distanzen erfolgt die Verschiebung der Ionen unter Wirkung der elektrischen Spannung außerordentlich schnell.

Die mögliche Einsatz des Effekts in zukünftigen Computerspeichern wird deutlich, wenn man sich die Begrenzungen heutiger Speicher vor Augen führt. Die Arbeitsspeicher, die so genannten "DRAMs", sind flüchtige Informationsspeicher; ihre Information geht verloren, sobald die Betriebsspannung abgeschaltet wird. Außerdem wird man den kleinen Kondensator, der als Ladungsspeicher das Herzstück einer DRAM-Zelle darstellt, kaum noch weiter verkleinern können. Die andere heutige übliche Speichertechnologie, die so genannten Flash-Speicher in Digitalkameras und MP3-Playern, sind zwar nicht-flüchtige Speicher, aber der Schreibvorgang dauert zehntausend mal länger als bei den DRAMs. Das Widerstandschalten der Versetzungen in Übergangsmetalloxiden vereinigt möglicherweise die Vorteile beider Speicher: es ist ein nicht-flüchtiger Effekt, und erste Abschätzungen zeigen, dass das Umschalten sehr schnell ablaufen kann. Darüber hinaus zeigt die geringe Ausdehnung der Versetzungen, welch großes Potential hinsichtlich einer künftigen Steigerung der Integrationsdichte prinzipiell möglich ist. Falls es gelingen sollte, bis an die Grenzen der gefundenen Effekte vorzustoßen, ist eine weitere Steigerung der Dichte um einen weiteren Faktor 1000 gegenüber heutigen DRAM und Flash Generationen möglich.

Damit wird eventuell eine Vision des Erfinders des Transistors, Walter Shockley, wahr, der in den 80er-Jahren darüber nachgedacht hat, ob man Versetzungen in Kristallen eines Tages als elektronisch aktive Bauelemente nutzen und damit eine damals noch unvorstellbare Miniaturisierung erreichen kann.

Bevor man den nun gefundenen Effekt jedoch in praktischen Speicherbauelementen einsetzen kann, sind von der Forschung jedoch zahlreiche, sehr schwierige Aufgaben zu lösen. Die Versetzungen liegen in Einkristallen und aufgewachsenen Dünnschichten statistisch verteilt vor. Für den Einsatz in Computerspeichern müssten sie jedoch sehr regelmäßig angeordnet und präzise platziert werden. Um dieses zentrale Problem zu lösen, arbeiten die Jülicher Forscher nun daran, die Wafer durch geeignete, nanometergroße Keime vorzustrukturieren und dadurch eventuell den Versetzungen vorzugeben, an welchen Stellen sie wachsen sollen. Weitere Herausforderungen betreffen die Suche nach Methoden zur massenfertigungstauglichen Herstellung geeigneter, ebenfalls nanometergroßen Unter- und Oberelektroden, die ein langzeitstabiles Schalten erlauben, sowie zur Herstellung von Leiterverbindungen auf dieser kleinen Skala. Die Zukunft wird zeigen, inwiefern es gelingt, diese Aufgaben zu lösen und damit die Tür zu einer ganz neuen Generation von Computerspeichern aufzustoßen.

Pressekontakt: Kosta Schinarakis, Wissenschaftsjournalist, Öffentlichkeitsarbeit, Forschungszentrum Jülich Tel. 02461 61-4771, Fax 02461 61-4666, E-Mail: k.schinarakis@fz-juelich.de

Das Forschungszentrum Jülich ist das größte multidisziplinäre Forschungszentrum in Europa. Seine Themen spiegeln die großen Herausforderungen der Gesellschaft wider: Versorgung mit Energie, Schutz der Umwelt, Umgang mit Information sowie Erhalt von Gesundheit. Jülicher Wissenschaftler arbeiten in den Disziplinen Physik, Chemie, Biologie, Medizin und Ingenieurwissenschaften. Langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaft und Technik werden ebenso erarbeitet wie konkrete technologische Anwendungen für die Industrie. Das 1956 gegründete Forschungszentrum Jülich ist Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Kosta Schinarakis | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/portal/index.php?index=495&cmd=show&mid=336
http://www.nature.com/

Weitere Berichte zu: Computerspeicher Leitfähigkeit

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Innovative Datenanalyse von Fraunhofer Austria
18.10.2019 | Fraunhofer Austria Research GmbH

nachricht Dank Hochfrequenz wird Kommunikation ins All möglich
17.10.2019 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Das Rezept für eine Fruchtfliege

18.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics