Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Acht nationale Supercomputing-Zentren starten europäischen Verbund für verteiltes Höchstleistungsrechnen

09.11.2004


DEISA: Ein virtueller Supercomputer für Europa



Führende Höchstleistungsrechenzentren haben im Projekt DEISA die erste Stufe für einen verteilten europäischen Supercomputer mit einer Gesamtleistung von mehr als 20 Teraflops erfolgreich realisiert: Vier Höchstleistungsrechner in Deutschland, Frankreich und Italien sind jetzt miteinander vernetzt. DEISA, die "Distributed European Infrastructure for Supercomputing Applications", ist ein wichtiger Beitrag zur Schaffung einer gemeinsamen europäischen Forschungsinfrastruktur. Projektpartner sind das Forschungszentrum Jülich und das Rechenzentrum Garching der Max-Planck-Gesellschaft aus Deutschland, EPCC und ECMWF (Erkl. d. Abk. s. unten) aus Großbritannien, IDRIS-CNRS aus Frankreich, CINECA aus Italien, SARA aus den Niederlanden und CSC aus Finnland. Das Projekt wird durch das 6. Forschungsrahmenprogramm der Europäischen Kommission gefördert und hat eine Laufzeit von fünf Jahren, in der die Partner eine innovative europaweite Supercomputing-Infrastruktur aufbauen und betreiben werden.



Hauptziel des von IDRIS-CNRS geleiteten Projekts DEISA ist es, neue Forschungsergebnisse in einem breiten Themenspektrum von Wissenschaft und Technologie durch den Betrieb einer verteilten Höchstleistungsrechen-Umgebung zu ermöglichen. Dazu sollen vorhandene nationale Plattformen über ein spezielles Netzwerk eng miteinander verbunden und durch innovative System- und Netz-Software unterstützt werden. Dazu wurden Strategien für einen koordinierten Betrieb vereinbart, so dass die gemeinsame Infrastruktur mehr sein wird als die Summe der aggregierten Rechenleistung.

Das integrierte Höchstleistungsrechnen soll Europas Wettbewerbsfähigkeit in Wissenschaft und Forschung in allen Bereichen steigern, in denen extreme Rechenleistungen benötigt werden. Bisher ist die Bereitstellung von Hochleistungsrechenressourcen für die Forschung die Aufgabe nationaler Rechenzentren. Doch der zunehmende globale Wettbewerb zwischen Europa, den USA und Japan stellt wachsende Anforderungen an die Rechenressourcen in jedem Land. Um wettbewerbsfähig zu bleiben, sind alle zwei Jahre große Investitionen in neue Rechnerkapazitäten erforderlich - ein Innovationszyklus, dem selbst die am weitesten entwickelten Länder nur noch schwer folgen können.

Die künftige Architektur der DEISA-Höchstleistungsrechenumgebung wurde anhand einer Reihe strategischer Erfordernisse entwickelt. Dazu gehört die Notwendigkeit eines transparenten und stabilen Betriebs, gewissermaßen als Layer oberhalb der vorhandenen nationalen Dienste, aber auch die Notwendigkeit, Endnutzern einen einfachen Zugang zu den verschiedensten Hochleistungssystemen zu ermöglichen sowie die Notwendigkeit, die Persistenz und Portabilität wissenschaftlicher Anwendungen zu gewährleisten.

Die DEISA-Innfrastuktur besteht aus zwei Schichten: In ihrem Kern bilden ähnliche Rechenplattformen (gleiche Architektur und gleiches Betriebssystem) zusammen einen "verteilten virtuellen Höchstleistungsrechner". Daraus resultiert ein Supercluster von Rechenknoten an wenigen Orten in verschiedenen Ländern, das dem Endnutzer jedoch als ein einheitliches System erscheint. Dazu werden in der ersten Projektphase vier IBM-Höchstleistungsrechner in Deutschland (FZJ und RZG), Frankreich (IDRIS) und Italien (CINECA) vernetzt. Das auf diese Weise entstehende System besteht aus mehr als 4.000 Prozessoren und riesigen Speicherkapazitäten und hat eine Gesamtrechenleistung von mehr als 22 Teraflops. In der zweiten Phase kommen zu diesem Cluster weitere IBM-Systeme - insbesondere aus Finnland - hinzu.

Schlüsseltechnologie dieses verteilten Superclusters ist - neben dem eigentlichen Netzwerk - die Fähigkeit, Daten gemeinsam über ein globales Dateiensystem zu nutzen - in diesem Fall das Global Parallel File System GPFS von IBM. Auf diese Weise können Rechenaufgaben über Landesgrenzen hinweg neu verteilt werden, um dann umfangreiche Rechenressourcen auf eine spezifische Anwendung an einem Ort konzentrieren zu können.

In der zweiten Schicht der DEISA-Infrastruktur wird das IBM-Supercluster mit weiteren Rechenplattformen verbunden und bildet auf diese Weise ein heterogenes Höchstleistungsrechennetz mit Vektor-Plattformen und Linux-Clustern. Die erste in das Netz zu integrierende Plattform ist der Höchstleistungsrechner SGI ALTIX von SARA mit 416 Itanium-Prozessoren.

Das entstehende heterogene DEISA-Netz wird Wissenschaftlern eine Reihe wichtiger Leistungen bieten: Management von Arbeitsabläufen auf der Basis von UNICORE-Middleware (komplexe Anwendungen unter Nutzung mehrerer Plattformen zur Durchführung einer Aufgabe), leistungsfähiges globales Datenmanagement in der gesamten Infrastruktur (gemeinsame Datennutzung zwischen verschiedenen Anwendungen, Anwendungen mit Zugriff auf verteilte Daten), Applikationen, die gleichzeitig auf mehreren Plattformen laufen, sowie, nicht zuletzt, Portale und Web-Schnittstellen als Endnutzer-Zugang zu komplexen Umgebungen.

Die DEISA-Infrastruktur nutzt die gesamte Bandbreite des europäischen Forschungsnetzes GEANT sowie nationaler Forschungsnetze, also DFN in Deutschland, RENATER in Frankreich und GARR in Italien. Von daher hängt die Entwicklung von DEISA auch vom weiteren Ausbau der nationalen Netzwerke ab. "Das DEISA-Konzept basiert auf der begründeten Vermutung, dass Netzwerk-Bandbreite gegen Ende dieses Jahrzehnts eine Handelsware, sehr ähnlich der Roh-Rechenleistung Anfang der 1990er Jahre, sein wird", stellte Projektleiter Prof. Victor Alessandrini von IDRIS-CNRS fest. "Ein fest integrierter europäischer Verbund für Höchstleistungsrechnen ist zwingend notwendig für die gemeinsame Nutzung extremer Rechenleistungen, die für hohe Effizienz und Leistungsfähigkeit benötigt werden. Diesen Weg beschreitet DEISA."

DEISA kann durch Hinzufügen weiterer Systeme, neuer Architekturen und zusätzlicher Partner horizontal ausgeweitet werden, so dass auf diese Weise die Fähigkeiten und die Attraktivität der Computerinfrastruktur weiter steigt. Erst vor kurzem hat man sich mit drei weiteren führenden Rechenzentren in Europa - mit HLRS und LRZ in Deutschland sowie BSC, dem neuen Höchstleistungsrechenzentrum in Barcelona, Spanien - auf einen Beitritt zum DEISA-Konsortium geeinigt. Die näheren Verhandlungen laufen noch. Mit dieser Erweiterung wären alle führenden Rechenplattformen in Europa im DEISA-Grid integriert. Darüber hinaus ist DEISA offen für weitere europäische Höchstleistungsrechenzentren und verwandte Initiativen weltweit, wie das TeraGrid in den USA oder EGEE (Enabling Grids for E-science in Europe), ein weiteres europäisches Forschungsinfrastrukturprojekt unter Federführung von CERN.

DEISA ist darauf fokussiert, die Entwicklung der Forschung in Europa massiv zu unterstützen. Dazu arbeitet DEISA mit führenden europäischen Forschergruppen aus verschiedenen wissenschaftlichen und industriellen Fachbereichen (Materialwissenschaften, Kosmologie, Fusionsforschung, Lebenswissenschaften, numerische Fluiddynamik und Umweltwissenschaften) zusammen.

Europäische Höchstleistungsrechenzentren

IDRIS-CNRS: Institut du Développement et des Resources en Informatique Scientifique, Centre National de la Recherche Scientifique, Frankreich

FZJ: Forschungszentrum Jülich GmbH, Jülich, Deutschland

RZG: Rechenzentrum Garching der Max Planck Gesellschaft, Garching, Deutschland

CINECA: Consorzio Interuniversitario per la gestione del Centro di Calcolo Elettronico dell’Italia Nordorientale, Italien

EPCC: Edinburgh Parallel Computing Centre, Edinburgh, England

CSC: Finnisches Informationstechnologie-Zentrum für Wissenschaft, Finnland

SARA: SARA Rechen- und Netzwerkdienste, Amsterdam, Niederlande

ECMWF: Europäisches Zentrum für mittel- und langfristige Wettervorhersage, England

HLRS: Höchstleistungsrechenzentrum Stuttgart, Deutschland

LRZ: Leibniz-Rechenzentrum München, Deutschland

BSC: Barcelona Supercomputing Centre, Spanien

Fachliche Informationen erhalten Sie von:
Dietmar Erwin, Forschungszentrum Jülich, Tel. 02461 61-6412, d.erwin@fz-juelich.de

Stefan Heinzel, Rechenzentrum Garching der Max-Planck-Gesellschaft, Tel. 089 3299-1340,
heinzel@rzg.mpg.de

Dr. Renée Dillinger | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/portal/angebote/pressemitteilungen
http://www.rzg.mpg.de
http://www.deisa.org

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht One step ahead: Adaptive Radarsysteme für smarte Fahrerassistenz
20.09.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Virtual Reality ohne Kopfschmerz oder Simulationsübelkeit
19.09.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics