Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lasertechnik ermöglicht 3D-Zellforschung

05.02.2013
Mit Lasertechnologie will Aleksandr Ovsianikov an der TU Wien Mikrostrukturen mit eingebetteten lebenden Zellen bauen. Er erhält dafür einen der begehrtesten Europäischen Forschungspreise: Den ERC Starting Grant.

Das Verhalten von Zellen hängt stark von der Umgebung ab, in der sie sich befinden. Um Zellen zu untersuchen und zu beeinflussen ist es daher höchst wertvoll, sie in eine maßgeschneiderte Umgebung einbauen zu können.

Aleksandr Ovsianikov entwickelt ein Laser-gesteuertes Verfahren, mit dem man Zellen gezielt in feine Strukturen einweben kann – ähnlich wie in natürlichem biologischen Gewebe, wo sie von der sogenannten „extrazellulären Matrix“ umgeben sind. Wichtig ist das für die Züchtung von neuem Gewebe, für die Suche nach neuen Medikamenten oder für die Stammzellenforschung. Für dieses Projekt erhielt Ovsianikov nun einen ERC-Grant des European Research Council (ERC), der mit knapp 1,5 Millionen Euro dotiert ist.

High-Tech-Strukturen für die biomedizinische Forschung

„Zellen auf einer ebenen Fläche anzusiedeln, ist nicht schwer. Doch solche Zellkulturen benehmen sich anders als Zellen in einer dreidimensionalen Struktur“, erklärt Alexandr Ovsianikov. Im Gegensatz zur klassischen 2D Zell-Kultur in der Petrischale gibt es zur Zeit keine Standards für 3D-Systeme. Eine solche 3D-Struktur muss durchlässig sein, damit die Zellen mit allen notwendigen Stoffen versorgt werden können. Die Geometrie und die chemischen oder mechanischen Eigenschaften der Struktur sollen präzise angepasst werden können, um die Reaktion der Zellen auf die äußeren Bedingungen studieren zu können. Außerdem soll die 3D-Struktur rasch in großer Anzahl herstellbar sein, denn um verlässliche Ergebnisse zu erzielen muss man Experimente an Zellen oft an vielen Zellkulturen gleichzeitig durchführen.

Genau diese Anforderungen kann die Forschungsgruppe „Additive Manufacturing Technologies“ der TU Wien bestens erfüllen: Das interdisziplinäre Team entwickelt seit Jahren spezielle Fertigungstechniken, mit denen sich dreidimensionale Strukturen mit einer Präzision im Mikrometer-Bereich herstellen lassen.

Laser verhärtet Flüssigkeit

Zu Beginn schwimmen die Zellen in einer Flüssigkeit, die hauptsächlich aus Wasser besteht. Beigemischt sind zellverträgliche Moleküle, die auf eine ganz bestimmte Weise mit Licht reagieren: Ein fokussierter Laserstrahl lässt genau an den gewünschten Stellen chemische Doppelbindungen brechen. Eine chemische Kettenreaktion führt dann dazu, dass sich die Moleküle zu einem Polymer verbinden.

Um diese Reaktion auszulösen, müssen zwei Photonen des Laserlichts gleichzeitig absorbiert werden. Nur dort, wo das Laserlicht fokussiert ist, gibt es ausreichend viele Photonen für diesen Prozess. Material außerhalb dieses Bereichs wird dadurch nicht beeinflusst. „Dadurch können wir mit extrem hoher Präzision bestimmen, an welchen Stellen sich die Moleküle verkleben sollen und ein festes Netzwerk bilden“, erklärt Ovsianikov.

Indem man den Fokus des Laserstrahls gezielt durch die Flüssigkeit lenkt, entsteht eine feste Struktur, in der die lebenden Zellen von Anfang an eingebaut sind. Die übrigen Moleküle, die nicht zu Polymeren verklebt wurden, können danach einfach weggewaschen werden. So kann man eine Struktur aus Hydrogelen bauen, ähnlich der extrazellulären Matrix, die unsere eigenen Zellen im lebenden Gewebe umgibt. Ideen aus der Natur werden im Labor imitiert und technologisch nutzbar gemacht: Diese Taktik – die Biomimetik - ist gerade in der Materialwissenschaft heute sehr gefragt. „Diese Technologie könnte in bestimmten Fällen auch Tierversuche unnötig machen, und dabei viel schnellere und aussagekräftigere Ergebnisse liefern“, hofft Ovsianikov.

Hoffnungsgebiet Stammzellenforschung

Ein besonders spannendes Anwendungsgebiet ist die Stammzellenforschung: „Wir wissen heute, dass sich Stammzellen je nach Umgebung zu unterschiedlichen Gewebetypen weiterentwickeln können“, sagt Aleksandr Ovsianikov. „So entwickeln sie sich etwa auf festerem Untergrund zu Knochenzellen, auf weicherem Untergrund zu Nervenzellen.“ In der Laser-generierten 3D-Struktur kann man die Steifigkeit des Untergrundes von Anfang an genau bestimmen und so möglicherweise ganz gezielt unterschiedliche Gewebetypen hervorbringen.

Litauen, Deutschland, Österreich

Entscheidend ist bei diesem Forschungsprojekt die Interdisziplinarität des Teams, zwischen Maschinenbau, Materialforschung, Biologie und Chemie. Die Möglichkeit, mit Expertenteams aus so unterschiedlichen Forschungsrichtungen unter einem Dach arbeiten zu können, war für Aleksandr Ovsianikov auch ein wichtiger Grund, nach Wien zu kommen. Seit zwei Jahren forscht der gebürtige Litauer nun an der TU Wien, vorher war er an der Universität Hannover beschäftigt, wo er auch seine Dissertation verfasste.

Hochdotierte Auszeichnung des Europäischen Forschungsrates

Das Forschungsprojekt von Alsksandr Ovsianikov wurde vom Europäischen Forschungsrat (European Research Council, ERC) nun mit einem „ERC Starting Grant“ ausgezeichnet. Dieser hochdotierte Förderpreis wird an aufstrebende junge Forscherinnen und Forscher vergeben, die damit auf ihrem Weg zu akademischen Führungspositionen unterstützt werden sollen. Durch den ERC-Grant soll Ovsianikov nun in den nächsten fünf Jahren die Möglichkeit bekommen, rund um sich ein Forschungsteam aufzubauen und auf eine wissenschaftliche Abenteuerreise zwischen Materialwissenschaft und Zellbiologie zu gehen.

Rückfragehinweise:
Dr. Aleksandr Ovsianikov
Institut für Werkstoffwissenschaft und Werkstofftechnologie
Technische Universität Wien
Favoritenstr. 9-11, 1040 Wien
T: +43-1-58801-30830
aleksandr.ovsianikov@tuwien.ac.at

Dr. Florian Aigner | idw
Weitere Informationen:
http://www.tuwien.ac.at
http://www.expert-reviews.com/doi/abs/10.1586/erd.12.48

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Schönheit der organischen Form in 3D
12.07.2018 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Infektionen und Krebs: Welche Rolle spielen spezielle weiße Blutkörperchen?
06.07.2018 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics