Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helmholtz-Preis für zwei bahnbrechende Messmethoden

28.04.2016

Den bedeutendsten Preis der Metrologie erhalten in diesem Jahr Forscher für ihre Arbeiten in der angewandten Protein-Analyse und der Messung extrem schwacher Bindungsenergien in Helium-Molekülen.

Eigentlich möchte sich Helium gar nicht mit Artgenossen verbinden. Hin und wieder tut es das dennoch, jedoch mit verschwindend geringen Bindungsenergien. Diese haben Wissenschaftler der Goethe-Universität in Frankfurt erstmals messen können. Für diese messtechnische Sensation werden sie ebenso mit dem diesjährigen Helmholtzpreis geehrt wie ihre Forscherkollegen in Cambridge.


Der Helmholtz-Preis 2016

Helmholtz-Fonds

Letztere haben die in der DNA-Analytik bewährte Einzelmolekülmessung mit Nanoporen revolutionär weiterentwickelt und damit Bedingungen geschaffen, um theoretisch beliebig viele verschiedene Eiweißmoleküle innerhalb derselben Messung zu detektieren.

Der Helmholtzpreis ist in den Kategorien „Grundlagen“ und „Anwendungen“ mit jeweils 20 000 Euro dotiert und gilt als eine der international bedeutendsten Auszeichnungen in der Welt der Metrologie, der Wissenschaft vom genauen Messen.

„ Alle bisherigen Helmholtzpreisträger haben mit ihren Arbeiten die Kunst des Messens nachhaltig vorangebracht und viele zählen heute zu den renommiertesten Forschern in der Metrologie“, sagt Dr. Joachim Ullrich, Präsident der Physikalisch-Technischen Bundesanstalt (PTB) und Vorsitzender des Helmholtz-Fonds. „Wir sind sicher, dass es auch diesmal so sein wird.“ Dies sind die Leistungen der geehrten Forschungsgruppen:

Protein-Analyse: Spezielle DNA-Moleküle erlauben den gleichzeitigen Nachweis vieler unterschiedlicher Eiweißmoleküle

Die Entschlüsselung des Erbgutes ist eines der spektakulärsten Forschungsgebiete der biologischen Wissenschaft. Die Gene der DNA enthalten die Information zum Bau verschiedenster Eiweiße, der Proteine. Ein etabliertes Verfahren, Proteine ohne vorherige chemische Veränderung zu identifizieren, verwendet sogenannte Nanoporen.

Das sind winzige Kanäle in einer Membran mit jeweils einem unvorstellbar kleinen Volumen von etwa 10-24 m3. Eine bahnbrechende Neuerung auf dem Gebiet der Molekülmessung mit Nanoporen ist den Forschern um Nicholas A. W. Bell und Ulrich Keyser vom Cavendish Laboratory der Universität Cambridge gelungen. Sie kombinierten das klassische Verfahren mit einer neuartigen Nachweismethode.

Dazu stellten die Wissenschaftler eine Bibliothek aus maßgeschneiderten, gefalteten DNA-Molekülen (DNA-Origami) her, die jeweils über einen molekularen Barcode genau ein Protein an sich binden können. Diese können dann mit 94%iger Sicherheit über elektrische Messmethoden identifiziert werden. Neben der sehr hohen Selektivität können mit Hilfe des neuen Verfahrens erstmals bis zu vier verschiedene Proteine, simultan erkannt werden.

Die Herstellung der Nanoporen für dieses neue Verfahren ist wesentlich einfacher als für klassische Verfahren, da die Nanoporen universell eingesetzt werden können und nicht mehr für jedes zu identifizierende Protein angepasst werden müssen. Die Detektionsmethode funktioniert rein elektrisch und ist daher ideal für eine Miniaturisierung geeignet. Denkbar ist der Einsatz in Lab-on-a-chip-Systemen oder als tragbare Sensoren, quasi als Protein-Analyse für die Hosentasche.

Bindungsenergien in Helium₂ und Helium₃ gemessen

Helium ist ein Edelgas und sollte nach Meinung der Standardlehrbücher der Chemie keine Bindung mit anderen Atomen eingehen. Dass dies manchmal trotzdem geschieht, ist schon länger bekannt. Nun ist es der Forschergruppe um Reinhard Dörner vom Institut für Kernphysik an der Johann Wolfgang Goethe-Universität Frankfurt am Main weltweit erstmals gelungen, zweiatomige Helium-Dimere (He₂) und dreiatomige Helium-Trimere (He₃) zu erzeugen und deren Bindungsenergien präzise zu messen.

Die Bindungen zwischen den beiden Heliumatomen sind in He₂ nur ein Zehnmillionstel so stark wie in typischen Molekülen wie Wasser oder Wasserstoff. Die Bindungsenergie für das Helium-Dimer beträgt nach den Messungen der Preisträger 151,9 ± 13,3 neV, die für das Helium-Trimer, ein Komplex aus drei gebunden Helium Atomen, 236 ± 23 neV.

Die Frankfurter Forscher bestätigten weiterhin eine ungewöhnliche Dreierstruktur (Efimov-Zustand) des He₃-Moleküls, die bereits vor fast 40 Jahren von dem russischen Forscher Vitaly Efimov theoretisch vorhergesagt wurde. Für die Messung der extrem geringen Bindungsenergien näherten sich die Forscher mit einem Trick, indem sie die Moleküle gezielt zerstören und aus den Fragmenten Rückschlüsse auf die Bindungsenergie ziehen.

Die damit experimentell bestätigten Werte sind für die Metrologie bei tiefen Temperaturen von großer Bedeutung. Die Realgaseigenschaften, u. a. die thermische Leitfähigkeit, die Viskosität oder die dielektrischen Eigenschaften von Helium bei Temperaturen unterhalb weniger Kelvin können nun wesentlich genauer theoretisch berechnet und mit präzisen Messungen verglichen werden.

Der Helmholtz-Preis

Er wird für hervorragende wissenschaftliche und technologische Forschung auf dem Gebiet „Präzisionsmessung in Physik, Chemie und Medizin“ verliehen und diesem Jahr erstmalig in zwei Kategorien: Grundlagen und Anwendungen. Die Preisverleihung findet im feierlichen Rahmen des Workshops „Round and ready – dissemination of the kilogram via Si spheres“ am 22. Juni 2016 im Seminarzentrum der PTB statt. if/sp/ptb

Weitere Informationen:

http://www.ptb.de/cms/presseaktuelles/journalisten/presseinformationen/presseinf...

Imke Frischmuth | Physikalisch-Technische Bundesanstalt (PTB)

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Weltweit einzigartige Femtosekundenlaseranlage eingeweiht
21.06.2018 | Hochschule RheinMain

nachricht Stahl-Innovationspreis 2018: Mikro-Dampfturbine ausgezeichnet
21.06.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics