Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fraunhofer-Gesellschaft vergibt Wissenschaftspreise an Freiburger Solarforscher

19.05.2010
- Joseph-von-Fraunhofer-Preis für höchsteffiziente Mehrfachsolarzellen und Konzentratormodule
- Hugo-von-Geiger-Preis für Diplomarbeit zu innovativem Zellkonzept

Dr. Andreas Bett und Dr. Frank Dimroth vom Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg entwickeln Lösungen, um Strom aus Sonnenlicht in Zukunft billiger und effizienter zu machen. Hierzu arbeiten sie mit ihrem Team seit mehr als zehn Jahren an Solarmodulen, die das Sonnenlicht 500-fach auf winzige Solarzellen konzentrieren.

Diese Vorgehensweise reduziert die Fläche des benötigten Halbleitermaterials und ermöglicht den Einsatz von neuartigen Solarzellen, die besonders effizient Sonnenlicht in elektrischen Strom umwandeln. Große Beachtung haben die Freiburger Forscher im vergangenen Jahr für die Entwicklung einer sogenannten metamorphen Dreifachsolarzelle mit einem Rekordwirkungsgrad von 41,1 Prozent erfahren. Ergänzt durch eine spezielle Linsenoptik werden die höchsteffizienten Mehrfachsolarzellen in nunmehr marktreif entwickelten Konzentratormodulen eingesetzt. Hierfür nehmen Dr. Andreas Bett und Dr. Frank Dimroth in Leipzig heute die höchste Auszeichnung der Fraunhofer-Gesellschaft, den Joseph-von-Fraunhofer-Preis 2010, entgegen.

Optimierung von Optik und Material
»Wir ersetzen teures Halbleitermaterial durch günstige Optiken. Zusätzlich verwenden wir höchsteffiziente Solarzellen und reduzieren damit die Stromkosten«, erläutert Dr. Andreas Bett, Leiter der Abteilung »Materialien – Solarzellen und Technologien«. Mit Hilfe dieser Technologie lässt sich mehr Leistung pro Fläche erzeugen als in herkömmlichen Systemen. Unter günstigen Bedingungen könnten Stromkosten von zehn bis fünfzehn Cent pro Kilowattstunde in Süd-Europa möglich sein. Wegen der konzentrierenden Optik müssen Konzentratorsysteme dem Stand der Sonne nachgeführt werden. Sie nutzen nur den direkten Anteil des Sonnenlichts. Strahlung, die an Wolken oder Wassertröpfchen gestreut wird, kann nicht umgewandelt werden. Deshalb eignen sie sich nicht für den Einsatz in Deutschland oder auf Hausdächern, sondern vielmehr für große, kommerzielle Solarkraftwerke z.B. im sonnenreichen Süd-Europa. Die zweiachsige Nachführung der Systeme ermöglicht auch in den Morgen- und Abendstunden, wenn die Sonne tief am Himmel steht, eine hohe Leistung. Konzentratorsysteme sind modular aufgebaut und im Bereich von Kilowatt und Gigawatt beliebig erweiterbar. Ein weiterer Pluspunkt: Der Kapitalbedarf und die Investitionen für den Aufbau einer automatisierten Massenfertigung sind vergleichsweise gering. Weiterhin ist es auch eine sehr grüne Technologie: Der Energieverbrauch für die Herstellung und Installation von Konzentratorsystemen amortisiert sich bereits in wenigen Monaten.
Vom Labor auf den Markt
Aus hocheffizienten Mehrfachsolarzellen versehen mit einer speziellen Optik haben die Freiburger Forscher und ihr Team das sogenannte FLATCON®-Konzentratormodul entwickelt. Der Wirkungsgrad dieser Module: 29 Prozent. Die Technologie wurde 2005 mit der Ausgründung der Firma Concentrix Solar GmbH kommerzialisiert. Concentrix betreibt heute mit mehr als 60 Mitarbeiterinnen und Mitarbeitern eine Fertigungslinie in Freiburg und liefert hochkonzentrierende Solarmodule nach Süd-Europa und in die USA. Bis dato hat das junge Unternehmen mehr als 600 Kilowatt an Konzentratorsystemen in Spanien installiert. »Konzentratortechnologie fertigen ist wie Autos bauen«, sagt Dr. Frank Dimroth, Leiter der Gruppe »III-V – Epitaxie und Solarzellen« am Fraunhofer ISE, »durch die Massenfertigung sinken die Kosten und erst so kann eine neue Technologie ihr Potenzial voll entfalten. Langfristig rechnen wir damit, dass diese Technologie 20 bis 30 Prozent wirtschaftlicher sein wird als Siliciumtechnologie.« Um dieses Ziel zu erreichen, arbeitet am Fraunhofer ISE ein 50-köpfiges Team an der Optimierung vieler Teilaspekte des Systems, von der Solarzelle über die Messtechnik und Prozesstechnologie bis hin zu den Modulen. Es soll gezeigt werden, wie die Systeme in großen Stückzahlen kostengünstig hergestellt werden können, und dass sie über einen Zeitraum von 20 Jahren zuverlässig Energie produzieren. Aktuell liegt der Wirkungsgrad für ein komplettes 5 kW Konzentratorsystem bei 25 Prozent. »Wir sind sehr stolz auf unsere junge Mannschaft, die sich mit einem unglaublichen Engagement für die Solarenergie einsetzt. Dass wir den Joseph-von-Fraunhofer-Preis verliehen bekommen, bestätigt unsere Motivation Solarenergie durch neue Technologien konkurrenzfähig zu machen«, so Dr. Andreas Bett.
Aus dem All auf die Erde
Ursprünglich wurden höchsteffiziente Mehrfachsolarzellen für den Einsatz im Weltraum entwickelt. Erst die Kombination der hocheffizienten Zellen mit den Fresnelllinsen, schuf in der Herstellung eine kostengünstigere Alternative, die auch auf der Erde eingesetzt werden konnte. In der Rekordzelle der Freiburger Wissenschaftler werden drei Teilzellen aus Galliumindiumphosphid, Galliumindiumarsenid und Germani¬um übereinander gestapelt. Jeder der III-V Verbindungshalbleiter verwertet einen anderen Wellenlängenbereich des Sonnenlichts. Die komplexe innere Struktur sieht man der hauchdünnen, nur wenige µm dicken Solarzelle nicht an. Über den 3 mm² kleinen Zellen bündeln spezielle Fresnelllinsen die einfallenden Sonnenstrahlen über 500-fach. Damit die Zellen nicht überhitzen, sind sie auf einen Kupferträger aufgebracht, der die Wärme verteilt. So ist es ausreichend, die Solarzelle nur passiv zu kühlen. »Wir erwarten, dass sich die Hocheffizienz-Konzentratortechnologie, zusätzlich zur Photovoltaik aus kristallinem Silicium und der klassischen Dünnschicht-Technologie, als dritte Technologie zur kosteneffizienten Erzeugung von Solarstrom in sonnenreichen Gebieten der Erde durchsetzt«, sagt Prof. Eicke R. Weber, Leiter des Fraunhofer ISE.
Hugo-Geiger-Preis 2010 für neuartiges Zellkonzept
Auch dem Physiker Nils Brinkmann, ehemaliger Diplomand am Fraunhofer ISE, wird auf der Fraunhofer-Jahrestagung in Leipzig ein Preis für herausragende angewandte Forschung verliehen. Seine Diplomarbeit zum Thema »Epitaxie durch Löcher – Prozessentwicklung und Charakterisierung« wird mit dem 3. Hugo-Geiger-Preis 2010 ausgezeichnet. Nils Brinkmann hat einen erweiterten Ansatz entwickelt, um konkurrenzfähigen Strom aus preiswerten photovoltaischen Modulen zu gewinnen. Er kombiniert die Vorteile zweier technologischer Ansätze und ergänzt diese um eine entscheidende Neuerung: Dünnschichtsolarzellen, bei denen kostensparend ein Wafersubstrat mit einer sehr dünnen Schicht aus hochreinem Silicium versehen wird, werden auf der Rückseite mit stromableitenden Kontakten versehen. Das Entscheidende an diesem neuen Zellkonzept sind winzige Löcher, durch die epitaktische Schichten auf beiden Seiten der dünnen Siliciumgrundlage aufgewachsen werden.
Die Preise im Profil
Joseph-von-Fraunhofer-Preis – Forschen für die Praxis
Seit 1978 verleiht die Fraunhofer-Gesellschaft alljährlich Preise für
herausragende wissenschaftliche Leistungen ihrer Mitarbeiter, die anwendungsnahe Probleme lösen. Mehr als 200 Forscherinnen und Forscher haben diesen Preis inzwi¬schen gewonnen. In diesem Jahr werden drei Preise mit jeweils 20 000 Euro verge¬ben.
Hugo-Geiger-Preis – Wissenschaftlichen Nachwuchs fördern
Mit diesem Preis werden hervorragende und anwendungsorientierte Diplom- und Doktor¬arbeiten ausgezeichnet – aus allen Forschungsbereichen der Fraunhofer-Gesellschaft. Namensgeber ist der Staatssekretär und Schirmherr der Gründungsversammlung der Fraunhofer-Gesellschaft, Hugo Geiger. Kriterien der Beurteilung sind: wissenschaftliche Qualität, wirtschaftliche Relevanz, Neuartigkeit und Interdisziplinarität der Ansätze. Die Arbeiten müssen in unmittel¬barer Beziehung zu einem Fraunhofer-Institut stehen oder dort entstanden sein. In diesem Jahr erhalten die drei Preisträger 5000, 3000 bzw. 2000 Euro.
Ansprechpartner für weitere Informationen:
Fraunhofer ISE, Presse und Public Relations
Telefon +49 761 4588-5150
Fax +49 761 4588-9342
info@ise.fraunhofer.de
Projektleiter:
Dr. Andreas Bett, Fraunhofer ISE
Telefon +49 761 4588-5257
Fax +49 761 4588-9250
andreas.bett@ise.fraunhofer.de
Dr. Frank Dimroth, Fraunhofer ISE
Telefon +49 761 4588-5258
Fax +49 761 4588-9250
frank.dimroth@ise.fraunhofer.de

Karin Schneider | Fraunhofer
Weitere Informationen:
http://www.ise.fraunhofer.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Acht Millionen Euro für die Forschung: Smarte Implantate sollen Knochen besser heilen
10.12.2019 | Universität des Saarlandes

nachricht German Design Award 2020 für Sensorschleuse Argus von dormakaba
09.12.2019 | dormakaba Deutschland GmbH

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics