Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1,5 Millionen Euro für Grundlagenforschung zur Bewegungssteuerung

30.11.2012
Europäische Union fördert das Projekt MU-TUNING. Dr. Till Marquardt vom European Neuroscience Institute erforscht die molekularen Grundlagen der Bewegungssteuerung durch das zentrale Nervensystem.

Wie werden im Gehirn entworfene Verhaltensprogramme in Bewegungen umgesetzt? Antworten soll das Projekt „MU-TUNING“ – „Motor unit functional tuning“ unter der Leitung von Dr. Till Marquardt vom European Neuroscience Institute (ENI) der Universitätsmedizin Göttingen (UMG) liefern. Dr. Marquardt will die molekularen Mechanismen entschlüsseln, die der Steuerung des Bewegungsapparats durch das zentrale Nervensystem zu Grunde liegen.

Der Europäische Forschungsrat (European Research Council - ERC) fördert die Grundlagenforschung mit einem Consolidator Grant in Höhe von rund 1,5 Millionen Euro über einen Zeitraum von fünf Jahren. Die Förderung erfolgt im Rahmen des 7. EU-Forschungsrahmenprogramms. Das Projekt ist November 2012 gestartet.

„Mit dem Consolidator Grant für Dr. Marquardt hat die UMG bereits den zweiten EU-Grant in diesem Jahr eingeworben. Das ist eine bemerkenswerte Leistung unserer Forscher und belegt, dass die Universitätsmedizin Göttingen ein attraktives und professionelles Umfeld für erfolgreiche Wissenschaftlerinnen und Wissenschaftler bietet“, sagt Prof. Dr. Heyo Kromer, Dekan und Sprecher des Vorstandes der UMG.

MOTONEURONE ALS KONTROLLEURE
Spezielle Nervenzellen im Rückenmark, sogenannte Motoneurone, stehen im Mittelpunkt der Forschung von MU-TUNING. Motoneurone sind die einzige Schnittstelle zwischen dem zentralen Nervensystem und dem Bewegungsapparat. Sie kontrollieren über elektrische Impulse die Aktivität der Skelettmuskulatur und sind deshalb elementar wichtig dafür, dass „Bewegung“ überhaupt möglich wird. Dabei besitzen Motoneurone die Fähigkeit, eine Vielzahl elektrischer „Befehle“ des übrigen Nervensystems zu integrieren und so in einen Code elektrischer Impulse umzusetzen, der die flüssige Ausführung von Körperbewegungen vermittelt. Fallen sie krankheitsbedingt aus oder ist die Verbindung zwischen Gehirn und Motoneuronen beziehungsweise zwischen Motoneuronen und der Muskulatur beschädigt, führt dies zu Lähmung. Ziel der Grundlagenforschung von Dr. Marquardt ist es, die molekularen Mechanismen zu entschlüsseln, die für die besonderen funktionellen Eigenschaften von Motoneuronen verantwortlich sind.

„Wir wollen erst einmal die molekularen „Schalter“ identifizieren, die es Motoneuronen erlauben ihre Funktionen auszuführen. Dann interessiert uns, wie die Schalter genau funktionieren“, sagt Dr. Till Marquardt. Bekannt ist bisher: Die Funktionsweise dieser Schalter unterliegt nutzungsabhängigen Kontrollmechanismen. Diese werden wiederum durch erhöhte oder verringerte Aktivität der Motoneurone aktiviert, bedingt etwa durch Ausdauersport oder Bettlägerigkeit. Diese aktivitätsabhängigen Mechanismen sind außerdem wichtig, um die Funktionsweise der Motoneurone und ihren Energiestoffwechsel auf den konkreten Bewegungsbedarf anzupassen. „Die Identifizierung der entsprechenden Mechanismen wird letztendlich helfen, neue Angriffspunkte für die Behandlung krankheits- oder altersbedingter Beeinträchtigungen des neuromuskulären Systems zu finden“, so Dr. Marquardt. „Die Förderung durch den ERC ermöglicht es uns, diese Forschung auf eine breite Grundlage zu stellen und die Voraussetzungen für den Erfolg des Projekts zu schaffen."

Dr. Till Marquardt (40) leitet seit 2007 die Forschungsgruppe Neuroentwick-lungsbiologie am European Neuroscience Institute in Göttingen. Der promovierte Biologe beschäftigt sich mit den molekularen Grundlagen der Bewegungssteuerung durch motorische Neurone und den dynamischen zellulären Prozessen welche die koordinierte Entwicklung motorischer, sensorischer und autonomer Erregungskreise steuern.

Bildunterschrift: Bewegungen werden durch hochspezialisierte Nervenzellen im Rückenmark, Motoneurone, gesteuert. Die Motoneurone übersetzen hierbei "Befehle" des Gehirns (INPUT) in definierte Nervenimpuls-Codes, welche Muskelaktivität und damit Bewegungen (OUTPUT) auslösen. Wie Motoneurone diese Leistungen erbringen, soll die Forschung von Dr. Marquardt aufklären.

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen – Georg-August-Universität
European Neuroscience Institute – Göttingen (ENI-G)
Leiter des Developmental Neurobiology Laboratory
Dr. Till Marquardt, Telefon 0551 / 39-13400
Grisebachstr. 5, 37077 Göttingen
T.Marquardt@eni-g.de

Stefan Weller | idw
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Ultraschall verbindet
13.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht DFG fördert 15 neue Graduiertenkollegs 11/2018
12.11.2018 | Deutsche Forschungsgemeinschaft (DFG)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics