Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Integrierte Zeitlupen für die Messung von sehr kurzen Signalen

07.10.2019

Die THz-Photonics Group der Technischen Universität Braunschweig hat eine neue Methode zur zeitlichen Vergrößerung von optischen oder auch elektrischen Signalen entwickelt, die sich auf einem einzelnen Chip integrieren lässt. Die Ergebnisse wurden in Scientific Reports veröffentlicht.

Zeitlich kurze Signale werden in vielen Bereichen von Wissenschaft und Technik angewendet. Die steigende Nutzung von Streaming Diensten, Online Spielen und Social Media führt zu immer höheren Datenraten und damit immer kürzeren Signalen in den weltweiten Kommunikationsnetzen. Für sehr kurze Pulse sind elektronische Systeme aber zu langsam, um diese noch detektieren oder messen zu können.


Elektronisch-Optischer Siliziumchip mit der Ein- und Auskopplung optischer (links) und hochfrequenter elektrischer Signale (rechts) auf einer konventionellen elektrischen Leiterplatte.

Arijit Misra/TU Braunschweig frei zur Veröffentlichung

Mit Mikroskopen oder Lupen beispielsweise kann das Bild eines sehr kleinen Objekts soweit vergrößert werden, dass es mit bloßem Auge zu erkennen ist.

„Dieselbe Idee lässt sich auch für extrem kurze Signale verwenden“, erläutert Professor Thomas Schneider, Leiter der THz-Photonics group an der TU Braunschweig. „Eine Zeitlupe vergrößert das Signal so lange in der Zeit oder zieht die Signale so lange auseinander, bis ein relativ langsamer elektronischer Detektor in der Lage ist, diese zu messen.“

Bisher gezeigte Zeitlupen beruhen darauf, dass ein sehr kurzes Signal aus vielen einzelnen Frequenzen besteht. Umso kürzer, umso mehr Frequenzen treten auf. In einer Glasfaser beispielsweise breiten sich diese Frequenzen mit unterschiedlichen Geschwindigkeiten aus.

Nach einer gewissen Länge der Fasern kommen zunächst die hohen, dann die mittleren und dann die niedrigen Frequenzen an. Das Signal am Eingang wird also zeitlich auseinandergezogen und lässt sich mit einer langsamen Elektronik messen.

Schneider: „Für die meisten Anwendungen wäre es allerdings vorteilhaft, wenn man solche Zeitlupen auf einem Chip integrieren könnte.“ Genau das ist der THz-Photonics Group der TU Braunschweig in Zusammenarbeit mit Prof. Linjie Zhou von den state key laboratories of advanced optical communications systems and networks der Shanghai Jiao Tong University nun mit der Entwicklung einer neuen Methode zur zeitlichen Vergrößerung von optischen oder auch elektrischen Signalen gelungen.

Die neue Methode beruht auf zwei Schritten. Zunächst wird das Eingangssignal kopiert, so dass am Ausgang der ersten Stufe eine Menge von exakten Kopien mit einer genau definierten Wiederholrate auftaucht. Dies geschieht mit Hilfe eines integrierten Ringresonators (ein zu einem Ring gebogener Wellenleiter, mit Ein- und Auskopplung), der von Linjie Zhous Gruppe hergestellt wurde. Ist Umlaufzeit im Ring größer als die Dauer des Signals, wird bei jedem Umlauf eine Kopie des Signals aus dem Ring ausgekoppelt.

In einem zweiten Schritt wird nun jede dieser Signalkopien mit einem zeitlich sehr kurzen Puls multipliziert. Nur an der Stelle, an der das Signal und der sehr kurze Puls gleichzeitig existieren, erhält der Puls die Amplitude der Signalkopie. Dies wird Abtastung genannt und geschieht für die neue Methode in zwei gekoppelten Modulatoren, welche sowohl die Pulserzeugung als auch die Multiplikation ausführen.

Ist die Wiederholrate der Signalkopien etwas verschieden zu der Wiederholrate der Abtastpulse, wird jede einzelne Kopie des Signals an einer anderen Stelle gemessen. Die Verbindungslinie zwischen den einzelnen Abtastwerten der Kopien ist das abgetastete, zeitlich vergrößerte Eingangssignal, welches sich nun mit einer langsamen Elektronik messen lässt.

„Die Methode ermöglicht integrierte, kosteneffektive analog-zu-digital-Konverter und Messsysteme mit extrem kleinen Abmessungen für die Charakterisierung von einzelnen, irregulären Ereignissen mit einer schnellen Änderung und sehr großen Bandbreiten bis in den THz-Bereich“, sagt Schneider.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Schneider
Technische Universität Braunschweig
Institut für Hochfrequenztechnik
THz-Photonics group
Schleinitzstraße 22
38106 Braunschweig
Tel.: +49 531 391-2003
E-Mail: thomas.schneider@tu-braunschweig.de

www.tu-braunschweig.de/ihf

Originalpublikation:

A.Misra, S. Preussler, L. Zhou and T. Schneider “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator” Scient. Rep. 10.1038/s41598-019-50691-2 (SREP-19-24563-T). In Scientific Reports (https://rdcu.be/bSSAG)

Ulrike Rolf | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-braunschweig.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Innovative Power-to-Gas-Technologien für die Energiewende
11.02.2020 | Karlsruher Institut für Technologie

nachricht Strategien für eine erfolgreiche Sektorenkopplung
10.02.2020 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics