Patentiertes Konzept aus Halle: Neuartige, leistungsfähige Dioden und Transistoren

Mit ihrem Konzept wollen die Forscher der MLU die Eigenschaften von Dioden und Transistoren verbessern. Gängige Prozessoren bestehen aus Tausenden Dioden und Transistoren, in denen Daten verarbeitet werden.

„Die Energieeffizienz dieser einzelnen Bauteile bestimmt den Energieverbrauch des gesamten Prozessors“, sagt die Physikerin Prof. Dr. Ingrid Mertig von der MLU. Das größte Problem sei zudem immer noch der Energieverlust durch die Umwandlung von elektrischer Energie in Wärme, so die Forscherin weiter.

Gleichzeitig muss bei der Entwicklung dieser Bauteile abgewogen werden: Entweder sind sie sehr leistungsfähig und energieeffizient, können dann aber nur für einen bestimmten Zweck verwendet werden. Oder sie sind vielseitig einsetzbar, erbringen dafür eine geringere Leistung und benötigen mehr Energie.

Das Forschungsteam der MLU ist für seine neue Entwicklung der Frage nachgegangen, ob sich mit Hilfe der Spintronik diese Probleme lösen lassen. Grundlage für die Forschung ist eine spezielle Eigenschaft von Elektronen: der Spin. Dabei handelt es sich um eine Art Eigendrehimpuls von Elektronen, der ein magnetisches Moment erzeugt und Ursache des Magnetismus ist.

Die Forscherinnen und Forscher haben überprüft, ob und wie sich eine Diode oder ein Transistor entwickeln lassen, die neben der Ladung des Elektrons diesen Spin nutzen. Grundlage dafür sind neu entdeckte magnetische Materialien, die die Spininformation in besonderer Weise enthalten. Diese könnten in den neuartigen Bauteilen anstelle klassischer Halbleitermaterialien zum Einsatz kommen.

„Die neuen Transistoren, wie wir sie vorschlagen, verbinden Datenverarbeitung und -speicherung, sie verlieren dabei keine Energie und sie können problemlos neu konfiguriert werden“, fasst der Physiker Dr. Ersoy Sasioglu von der MLU zusammen. Das Konzept für diese Spintronik-Bauteile wurde bereits zum Patent angemeldet.

Der Schwerpunkt der halleschen Gruppe lag zunächst darauf, das Materialdesign mit Hilfe theoretischer Simulationen vorzunehmen. In Kooperation mit experimentellen Physikern der Universität Bielefeld wollen die Wissenschaftler nun überprüfen, welche Materialien sich am besten für die Bauteile eignen könnten.

Gefördert wurde die Arbeit mit Mitteln aus dem Europäischen Fonds für regionale Entwicklung (EFRE) und vom Land Sachsen-Anhalt.

Sasioglu E., Blügel S, Mertig I. Proposal for Reconfigurable Magnetic Tunnel Diode and Transistor. ACS Applied Electronic Materials (2019). doi: 10.1021/acsaelm.9b00318

Media Contact

Tom Leonhardt idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-halle.de

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durch maschinelles Lernen Stoffklassen erkennen

Bioinformatiker der Friedrich-Schiller-Universität Jena haben gemeinsam mit Kollegen aus Finnland und den USA eine weltweit einmalige Methode entwickelt, bei der alle Metaboliten in einer Probe berücksichtigt werden können und sich…

Fingerkuppen-Sensor mit Feingefühl

Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) und der Universität Tokyo haben einen ultradünnen Mess-Sensor entwickelt, der wie eine zweite Haut auf der Fingerkuppe getragen werden kann. Dadurch bleibt…

Harzer Stausee drohen italienische Wassertemperaturen

Die Rappbodetalsperre im Harz ist die größte Trinkwassertalsperre in Deutschland und beliefert rund 1 Mio. Menschen mit Trinkwasser. Der Klimawandel könnte nun dafür sorgen, dass die Wassertemperaturen in dem Stausee…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close