Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faszination Weltall - Erlanger Forscher züchten Kristalle in der Schwerelosigkeit

15.06.2018

Um die Entstehung von Defekten bei der Herstellung von Kristallen besser zu verstehen, führten Forscher vom Fraunhofer IISB gemeinsam mit Kollegen von der Universität Freiburg das Weltraumexperiment „ParSiWal“ durch. Als Trägerrakete diente die unbemannte Forschungsrakete TEXUS 55 des Deutschen Zentrums für Luft- und Raumfahrt (DLR). TEXUS 55 startete am 31. Mai 2018 vom Raumfahrtzentrum Esrange bei Kiruna in Nordschweden. Dieses Experiment unter Schwerelosigkeit zielt auf eine optimierte Produktion von Silizium-Kristallen für Photovoltaik-Anwendungen auf der Erde ab.

Das Weltraumexperiment mit der Kurzbezeichnung ParSiWal („Bestimmung der kritischen Einfanggeschwindigkeit von Partikeln bei der gerichteten Erstarrung von Solarsilizium im Weltall“) dient zur Erforschung der Herstellung von Silizium-Kristallen, die zum Beispiel für Solarzellen in Photovoltaikanlagen benötigt werden.


Start der Forschungsrakete TEXUS-55 am 31. Mai 2018 in Esrange bei Kiruna in Nordschweden.

Deutsches Zentrum für Luft- und Raumfahrt e.V.


Bergung der Nutzlast von TEXUS-55.

SSC Swedish Space Corporation

Das Experiment untersucht speziell den unerwünschten Einbau von Siliziumkarbid- und Siliziumnitrid-Partikeln, die bei der Erstarrung von Silizium-Kristallen aus einer Siliziumschmelze auftreten können. Der Einbau derartiger Partikel vermindert die Ausbeute und die spätere Qualität der Solarzellen. Es gilt herauszufinden, wie sich dies in der Produktion zukünftig vermeiden lässt.

Mit TEXUS 55 erwarten die Forscher eine Bestätigung früherer Experimente, wonach die Strömung in der mehr als 1400 °C heißen Siliziumschmelze einen entscheidenden Einfluss auf das Einbauverhalten der Partikel ausübt. Allerdings wurden die experimentellen Rahmenbedingungen in diesem Weltraumexperiment diesmal deutlich komplexer ausgelegt. Die Ergebnisse lassen sich so besser auf die Bedingungen der industriellen Produktion auf der Erde anwenden.

Um die Mechanismen zum Partikeleinbau noch genauer sowie das Wachstum von bestimmten Kristallbereichen bei der Kristallzüchtung besser zu verstehen, hat das Forscherteam vom Fraunhofer IISB und der Universität Freiburg Anfang des Jahres mit der Vorbereitung weiterer Schwerelosigkeitsexperimente begonnen.

Vor einigen Monaten starteten im Projekt InSituKris („In-situ Beobachtung von Fremdphasenpartikeln in Fluiden, ihrer Bewegungsprofile und ihrer Interaktion mit der Kristallfront“) die Vorbereitungen für ein Weltraumexperiment, bei dem der kritische Partikeleinbau während der Erstarrung des Kristalls in-situ – also live – in einer optisch transparenten Schmelze beobachtet werden kann.

Parallel wird im Projekt SaFari („Einfluss der Stabilität des Facettenwachstums auf die Entstehung von Kristalldefekten bei der Halbleiterkristallzüchtung“) ein Effekt untersucht, durch den sich in einzelnen, lokal stark begrenzten Bereichen das Kristallisationsverhalten vom Rest des erstarrenden Kristalls unterscheidet. Diese Bereiche werden Facetten genannt.

Das Facettenwachstum beeinflusst sowohl die Stabilität des Kristallzüchtungsprozesses als auch die Kristallqualität und kommt besonders bei der industriellen Herstellung von Halbleiterkristallen für High-End-Anwendungen zum Tragen. Als Beispiele sind Indiumphospid-Kristalle für Hochfrequenzbauelemente für den nächsten Mobilfunkstandard, hochreine Germanium-Kristalle für Detektoranwendungen oder hochdotierte Siliziumkristalle für energieeffiziente leistungselektronische Bauelemente zu nennen.

Die TEXUS-Flüge mit den Experimenten zu InSituKris und SaFari an Board werden frühestens im Jahr 2020 stattfinden. Bis dahin müssen die Forscher noch die theoretischen Modelle weiterentwickeln, verschiedene Voruntersuchungen und Referenzexperimente durchführen, Messmethoden verfeinern und die Auswertung der späteren Experimente vorbereiten.

ParSiWal, SaFari und InSituKris sind Bestandteile des Programms „Forschung unter Weltraumbedingungen“ des Deutschen Zentrums für Luft und Raumfahrt e.V. (DLR) und werden vom DLR-Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Die Projekte ParSiWal, SaFari und InSituKris setzen die lange Tradition der Erlanger Weltraumexperimente auf dem Gebiet der Kristallzüchtung fort. So züchteten Erlanger Forscher bereits auf früheren Raketenflügen (1984, 1988, 1989, 1992, 2015, 2016) und sogar auf dem Space-Shuttle (1983, 1985, 1993) technische Kristalle. Zudem hat die am Fraunhofer IISB entwickelte Software CrysMAS® vor etwa 15 Jahren ein aufwendiges Qualifizierungsverfahren bei der Europäischen Raumfahrtagentur ESA bestanden. Seitdem wird das Programm CrysMAS®, das Temperaturverteilungen in Ofenanlagen berechnet, von Forschern eingesetzt, um materialwissenschaftliche Experimente auf der Internationalen Raumstation ISS zu simulieren.

Ansprechpartner

Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen
Tel. +49 9131 761-270
Fax +49 9131 761-280
info@iisb.fraunhofer.de

Fraunhofer IISB

Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB betreibt entsprechend dem Fraunhofer-Modell angewandte Forschung und Entwicklung in den Geschäftsbereichen Leistungs- und Energieelektronik und Halbleiter. Dabei deckt das Institut in umfassender Weise die Wertschöpfungskette für komplexe Elektroniksysteme ab, vom Grundmaterial zum vollständigen Elektronik- und Energiesystem. Schwerpunkte liegen in den Anwendungsgebieten Elektromobilität und Energieversorgung.

Das Institut erarbeitet für seine Auftraggeber Lösungen auf den Feldern Materialentwicklung, Halbleitertechnologie und -fertigung, elektronische Bauelemente und Module, Aufbau- und Verbindungstechnik, Simulation, Zuverlässigkeit, bis hin zur Systementwicklung in der Fahrzeugelektronik, Energieelektronik und Energieinfrastruktur. Das IISB verfügt u.a. über umfangreiche Halbleiterprozesstechnik, ein Testzentrum für Elektrofahrzeuge und ein Anwendungszentrum für Gleichstromtechnik.

Der Hauptstandort des Fraunhofer IISB ist in Erlangen, daneben gibt es Standorte am Energie Campus Nürnberg sowie in Freiberg. Das Institut hat mehr als 280 Mitarbeiter und einen Betriebshaushalt von rund 25 Mio. €.

Weitere Informationen:

https://www.iisb.fraunhofer.de/ Homepage Fraunhofer IISB
https://www.iisb.fraunhofer.de/presse Pressemitteilungen Fraunhofer IISB

Fraunhofer IISB Kommunikation | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Vernetzte Beleuchtung: Weg mit dem blinden Fleck
18.07.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie
17.07.2018 | Karlsruher Institut für Technologie (KIT)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics