Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo kommt der Zellkern her?

01.04.2016

Veröffentlichung zur Evolutionsbiologie

In der Natur existieren zwei Typen von Zellen: die ursprünglichen Prokaryoten und die komplexen Eukaryoten, aus denen alle höhere Lebewesen bestehen. Doch wie hat sich die komplexe innere Struktur der Eukaryoten mit ihrer Menge an Kompartimenten entwickelt? Düsseldorfer Evolutionsbiologen sehen in den Mitochondrien die Lösung für dieses Rätsel. In der Fachzeitschrift Trends in Microbiology veröffentlichen sie ihre neue Theorie.


Eukaryotische Zelle

Sven Gould / Trends in Microbiology

Die Urzellen sind noch einfach aufgebaut. Diese sogenannten Prokaryoten besitzen kaum innere Strukturen. Ihre funktionalen Bestandteile, inklusive der Erbanlagen, schwimmen alle gemeinsam im Zellinneren, dem Zytosol. Noch heute existieren diese Zellen in großer Zahl, in Form von Bakterien und Archaeen.

Alle höheren Lebewesen wie Pflanzen und Tiere bestehen dagegen aus eukaryotischen Zellen. In ihrem Inneren gibt es durch Zellmembranen separierte Untereinheiten, so genannte Kompartimente. Die Kompartimente tauschen untereinander Materialien durch kleine membranumhüllte Bläschen, den so genannten Vesikeln, aus. Das wohl prominenteste Kompartiment ist der Zellkern, der das Erbmolekül DNA birgt. Ebenfalls elementar für das Überleben der Zellen ist das Mitochondrium, das „Kraftwerk“ unserer Zellen.

Ein Kompartiment aller tierischer und pflanzlicher Zellen, das Mitochondrium selbst, ist durch „Endosymbiose“ entstanden: Vor fast 2 Milliarden Jahren wurde ein Bakterium in einem anderen Prokaryoten (einem Archaeon) aufgenommen. Aus dieser Integration einer Zelle in eine andere entstanden nicht nur die Mitochondrien, die in keiner eukaryotischen Zelle fehlen, sondern die Eukaryoten selbst.

PD Dr. Sven Gould, Sriram Garg und Prof. Dr. William Martin vom Institut für Molekulare Evolution der Heinrich-Heine-Universität Düsseldorf fragten sich, wie während der Evolution die anderen Kompartimente entstanden, d.h. wie sich das innere Membransystem bildete und was für diese Entwicklung der „Startschuss“ war. Ihr neues Modell publizieren sie in der aktuellen Ausgabe der Fachzeitschrift Trends in Microbiology.

Demnach stand das Mitochondrium am Anfang von allem. Nachdem es in die Wirtszelle durch Endosymbiose integriert wurde, produzierte es Vesikel, die miteinander verschmolzen und so innere Kompartimente bildeten. Diese haben dann auch die DNA umhüllt und so den Zellkern gebildet. Auf Basis ihres Modells beschreiben die Düsseldorfer Evolutionsbiologen die sukzessive Entstehung aller weiteren Kompartimente, in einer so nie dagewesenen Reihenfolge.

Originalpublikation
Sven B. Gould, Sriram G. Garg, William F. Martin, „Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomem-brane System“, Trends in Microbiology, 31.03.2016
DOI: 10.1016/j.tim.2016.03.005

Kontakt
PD Dr. Sven Gould
Institut für Molekulare Evolution
Tel.: 0211 81-13983
Email: gould@hhu.de

Weitere Informationen:

http://www.uni-duesseldorf.de/home/startseite/news-detailansicht/article/wo-komm...

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt
13.07.2020 | Johannes Gutenberg-Universität Mainz

nachricht Alternativmethoden für Tierversuche: VISION – Ein mikrofluidisches Chipsystem als Alternative zu Tierversuchen
13.07.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt

13.07.2020 | Biowissenschaften Chemie

Alternativmethoden für Tierversuche: VISION – Ein mikrofluidisches Chipsystem als Alternative zu Tierversuchen

13.07.2020 | Biowissenschaften Chemie

Neue Molekülbibliothek hilft bei der systematischen Suche nach Wirkstoffen

13.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics