Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rabiate Zellen auf Wanderschaft

06.09.2016

Wenn Zellen wachsen und sich vermehren, treten sie mit anderen Zellen in Kontakt. Das ist bei der Entwicklung, der Regeneration oder nach Verletzungen so, doch auch beim Krebswachstum und der Metastasenbildung. Bei diesen Zellkontakten tauschen die Zellen Informationen über Proteine ihrer Zellmembranen aus. Wollen die Zellen ein abstoßendes Signal übermitteln, müssen die gebildeten Proteinkomplexe zwischen den beiden Zellen wieder getrennt werden. Dies geht anscheinend am schnellsten, wenn eine Zelle den Proteinkomplex aus der Membran der Nachbarzelle verschluckt. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried zeigen nun, welche Moleküle diesen Vorgang steuern.

Entwicklung ist ein rasanter Prozess. Immer mehr Zellen entstehen und müssen ihre Position im Körper finden, sich gegeneinander abgrenzen, um Gewebe zu bilden, oder, wie im Fall des Nervensystems, weit entfernte Partnerzellen kontaktieren. „Zu dem Gedränge kommt ein ordentliches Geschubse“, sagt Rüdiger Klein, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie untersucht, wie Zellen sich zurechtfinden.


Die stabilen Proteinkomplexe (gelb) zwischen zwei Zellen werden zum Trennen der Zellen mit Hilfe des Signalproteins Tiam in eine der Zellen hineingezogen (gelbe Punkte in der roten Zelle).

MPI für Neurobiologie / Gaitanos

„Eine beliebte Methode, einer anderen Zelle die Richtung zu weisen, ist das Wegstoßen nach kurzem Kontakt.“ Nach Beobachtung der Wissenschaftler gehen die Zellen dabei nicht gerade zimperlich miteinander um und verschlucken sogar ganze Stücke aus der Membran der jeweils anderen Zelle.

Wenn Zellen miteinander in Kontakt treten, geschieht dies oft über Ephrine und Eph-Rezeptoren. Diese Proteine befinden sich auf der Oberfläche fast aller Zellen. Treffen zwei Zellen aufeinander, verbinden sich ihre Ephrine und Eph-Rezeptoren zu festen Ephrin/Eph-Komplexen. Diese Komplexe setzen daraufhin über Signalketten den Abstoßungsprozess in Gang.

„Nun kommt das Problem, denn anscheinend wollen sich die Zellen dann so schnell wie möglich trennen – doch durch die stabilen Ephrin/Eph-Komplexe hängen die beiden Zellen aneinander“, erklärt Rüdiger Klein. Also machen die Zellen etwas anderes: Sie stülpen die eigene Zellmembran so weit über die einzelnen Komplexe, bis sich der Komplex samt angrenzender Membran aus der Nachbarzelle herauslöst und ganz in die Zelle aufgenommen wird.

Dass Zellen diesen als Endozytose bekannten Vorgang nutzen können, um sich voneinander zu trennen, fanden die Max-Planck-Forscher bereits 2003 heraus. Fortschritte in der Molekularbiologie haben es ihnen nun ermöglicht zu zeigen, wie der Vorgang im Detail gesteuert wird.

Mit einer Reihe genetischer Modifikationen und dem gezielten Ausschalten einzelner Zellkomponenten konnten die Wissenschaftler zeigen, dass durch die Bildung des Ephrin/Eph-Komplexes Tiam-Signalproteine aktiviert werden. Als Folge werden Rac-Enzyme aktiv, die wiederum durch eine lokale Umstrukturierung des Aktin-Zellskeletts zum Ausstülpen der Zellmembran über den Ephrin/Eph-Komplexe führen. Fehlt eine dieser Komponenten, ist die Aufnahme des Komplexes durch Endozytose blockiert, und somit können die Zellen sich nicht abstoßen und hängen aneinander fest.

Die Aufklärung dieses Signalwegs ist wichtig, um die Entwicklung von neuronalen Netzwerken und anderen Organsystemen besser zu verstehen. Das Ergebnis ist jedoch auch für die Krebsforschung sehr interessant: Ephrine und Eph-Rezeptoren spielen durch ihre Fähigkeit, die Zellabstoßung zu steuern, eine große Rolle beim Eindringen von Krebszellen in Gewebe und der Metastasenbildung.

Daher stehen die Rezeptoren und ihre Bindungspartner im Fokus aktueller medizinischer Forschung. Sind die Komponenten des Signalweges bekannt, über den die Zellabstoßung gelenkt wird, könnten sich daraus neue Ansatzpunkte für Therapeutika entwickeln.

ORIGINALVERÖFFENTLICHUNG

Thomas N. Gaitanos, Jorg Koerner, Rüdiger Klein
Tiam/Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion
Journal of Cell Biology, 5. September 2016

KONTAKT

Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Rüdiger Klein
Abteilung "Moleküle – Signale – Entwicklung"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3150
Email: rklein@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/klein/de - Webseite der Abteilung von Prof. Rüdiger Klein

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Virenvermehrung in 3D
13.12.2019 | Julius-Maximilians-Universität Würzburg

nachricht Dem Feind auf der Spur: Neuer Algorithmus erkennt sogar kleinste Krebsmetastasen im ganzen Mauskörper
13.12.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virenvermehrung in 3D

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IPT und Ericsson starten mit 5G-Industry Campus Europe größtes industrielles 5G-Forschungsnetz Europas

13.12.2019 | Informationstechnologie

Virenvermehrung in 3D

13.12.2019 | Biowissenschaften Chemie

Dem Feind auf der Spur: Neuer Algorithmus erkennt sogar kleinste Krebsmetastasen im ganzen Mauskörper

13.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics