Rabiate Zellen auf Wanderschaft

Die stabilen Proteinkomplexe (gelb) zwischen zwei Zellen werden zum Trennen der Zellen mit Hilfe des Signalproteins Tiam in eine der Zellen hineingezogen (gelbe Punkte in der roten Zelle). MPI für Neurobiologie / Gaitanos

Entwicklung ist ein rasanter Prozess. Immer mehr Zellen entstehen und müssen ihre Position im Körper finden, sich gegeneinander abgrenzen, um Gewebe zu bilden, oder, wie im Fall des Nervensystems, weit entfernte Partnerzellen kontaktieren. „Zu dem Gedränge kommt ein ordentliches Geschubse“, sagt Rüdiger Klein, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie untersucht, wie Zellen sich zurechtfinden.

„Eine beliebte Methode, einer anderen Zelle die Richtung zu weisen, ist das Wegstoßen nach kurzem Kontakt.“ Nach Beobachtung der Wissenschaftler gehen die Zellen dabei nicht gerade zimperlich miteinander um und verschlucken sogar ganze Stücke aus der Membran der jeweils anderen Zelle.

Wenn Zellen miteinander in Kontakt treten, geschieht dies oft über Ephrine und Eph-Rezeptoren. Diese Proteine befinden sich auf der Oberfläche fast aller Zellen. Treffen zwei Zellen aufeinander, verbinden sich ihre Ephrine und Eph-Rezeptoren zu festen Ephrin/Eph-Komplexen. Diese Komplexe setzen daraufhin über Signalketten den Abstoßungsprozess in Gang.

„Nun kommt das Problem, denn anscheinend wollen sich die Zellen dann so schnell wie möglich trennen – doch durch die stabilen Ephrin/Eph-Komplexe hängen die beiden Zellen aneinander“, erklärt Rüdiger Klein. Also machen die Zellen etwas anderes: Sie stülpen die eigene Zellmembran so weit über die einzelnen Komplexe, bis sich der Komplex samt angrenzender Membran aus der Nachbarzelle herauslöst und ganz in die Zelle aufgenommen wird.

Dass Zellen diesen als Endozytose bekannten Vorgang nutzen können, um sich voneinander zu trennen, fanden die Max-Planck-Forscher bereits 2003 heraus. Fortschritte in der Molekularbiologie haben es ihnen nun ermöglicht zu zeigen, wie der Vorgang im Detail gesteuert wird.

Mit einer Reihe genetischer Modifikationen und dem gezielten Ausschalten einzelner Zellkomponenten konnten die Wissenschaftler zeigen, dass durch die Bildung des Ephrin/Eph-Komplexes Tiam-Signalproteine aktiviert werden. Als Folge werden Rac-Enzyme aktiv, die wiederum durch eine lokale Umstrukturierung des Aktin-Zellskeletts zum Ausstülpen der Zellmembran über den Ephrin/Eph-Komplexe führen. Fehlt eine dieser Komponenten, ist die Aufnahme des Komplexes durch Endozytose blockiert, und somit können die Zellen sich nicht abstoßen und hängen aneinander fest.

Die Aufklärung dieses Signalwegs ist wichtig, um die Entwicklung von neuronalen Netzwerken und anderen Organsystemen besser zu verstehen. Das Ergebnis ist jedoch auch für die Krebsforschung sehr interessant: Ephrine und Eph-Rezeptoren spielen durch ihre Fähigkeit, die Zellabstoßung zu steuern, eine große Rolle beim Eindringen von Krebszellen in Gewebe und der Metastasenbildung.

Daher stehen die Rezeptoren und ihre Bindungspartner im Fokus aktueller medizinischer Forschung. Sind die Komponenten des Signalweges bekannt, über den die Zellabstoßung gelenkt wird, könnten sich daraus neue Ansatzpunkte für Therapeutika entwickeln.

ORIGINALVERÖFFENTLICHUNG

Thomas N. Gaitanos, Jorg Koerner, Rüdiger Klein
Tiam/Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion
Journal of Cell Biology, 5. September 2016

KONTAKT

Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 – 8578 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Rüdiger Klein
Abteilung „Moleküle – Signale – Entwicklung“
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 – 8578 3150
Email: rklein@neuro.mpg.de

http://www.neuro.mpg.de/klein/de – Webseite der Abteilung von Prof. Rüdiger Klein

Media Contact

Dr. Stefanie Merker Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Meeresspiegelanstieg: Stabilitäts-Check der Antarktis offenbart enorme Risiken

Je wärmer es wird, desto rascher verliert die Antarktis an Eis – und viel davon wohl für immer. Dies hat ein Team des Potsdam-Instituts für Klimafolgenforschung, der Columbia University und…

In Wäldern nicht aufräumen

Bitte nicht stören: Nach Waldbränden, Borkenkäferbefall oder anderen Schädigungen sollte in den betroffenen Wäldern nicht aufgeräumt werden. Das schreibt ein Forschungsteam in „Nature Communications“. Stürme, Brände, Borkenkäfer: Weltweit sind viele…

Technologieinnovation: Forschende entwickeln kleinsten Partikelsensor der Welt

TU Graz, ams und Silicon Austria Labs entwickelten einen kompakten und energieeffizienten Messsensor für mobile Endgeräte, der die Nutzerinnen und Nutzer in Echtzeit über den Feinstaubgehalt in der Luft informiert…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close