Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzlicher „Stahlbeton“: Grazer Biochemiker klären Lignin-Biosynthese

27.08.2015

Lignine lassen Pflanzen Richtung Sonne wachsen und sorgen gleichzeitig für die Abwehr von Fressfeinden. Ein detailliertes Verständnis der biochemischen Prozesse der Ligninherstellung ist vom Pflanzenschutz über die Pharmazie bis zur Biomasseverwertung in vielen Bereichen von großem Interesse.

Ein Forscherteam der TU Graz hat jetzt gemeinsam mit Kolleginnen und Kollegen von Uni Graz und acib gezeigt: ein bestimmtes Enzym ist der Schlüssel zur Ligninproduktion der Pflanzen. Damit richtet sich die Aufmerksamkeit der internationalen Fachwelt für Naturstoffsynthese auf eine ganz neue Enzymfamilie. Die Ergebnisse wurden im „Journal of Biological Chemistry“ publiziert.


Lignine lassen Pflanzen Richtung Sonne wachsen und sorgen gleichzeitig für die Abwehr von Fressfeinden.

TU Graz

Bildmaterial bei Nennung der angeführten Quellen honorarfrei verfügbar unter http://presse.tugraz.at/webgalleryBDR/data/Lignin_2015/index.htm

Selbst das kleinste Unkraut hat großen Nutzen - so zum Beispiel die Ackerschmalwand (Arabidopsis thaliana). Anhand dieser Modellpflanze der Pflanzenforschung ist einer Grazer Biochemiegruppe ein Durchbruch in der Biosynthese des pflanzlichen „Stahlbetons“ Lignin geglückt. Peter Macheroux hat gemeinsam mit seinem Team vom Institut für Biochemie der TU Graz und unter Mitwirkung der Uni Graz und des Kompetenzzentrums acib ein Enzym namens Berberine Bridge Enzyme, kurz BBE, als zentralen Schlüssel der Ligninproduktion von Pflanzen identifiziert.

Enzym ermöglicht Lignin-Produktion

BBE wurde erst vor einigen Jahren ebenfalls von einem Grazer Team rund um Macheroux im kalifornischen Goldmohn nachgewiesen. Auch die zentrale Rolle von BBE im Alkaloidstoffwechsel der Pflanzen – Alkaloide sind eine pharmazeutisch besonders interessante Gruppe pflanzlicher Wirkstoffe – war bald entdeckt. „Seither wurde durch Sequenzierarbeiten weltweit in derart vielen Pflanzen BBE gefunden, dass wir davon ausgehen, dieses Enzym in so gut wie allen Pflanzen aufzufinden“, erklärt Peter Macheroux.

Auffällig ist aber: Die Alkaloidproduktion ist ein Sekundärstoffwechsel, das heißt, im Gegensatz zur Photosynthese eben nur bestimmten und nicht allen Pflanzen eigen. „Wir mussten uns daher die Frage stellen: „Wieso haben auch nicht-alkaoidproduzierende Pflanzen jene Gene, die das Enzym BBE kodieren?“, so Macheroux.

Obwohl BBE im Pflanzenreich extrem verbreitet ist, wusste die Forschung so gut wie nichts über ihre biochemischen Funktionen. Mit modernsten biochemischen Methoden hat das Grazer Team nun zwei Proteine der BBE-Familie separiert und untersucht. Das Ergebnis: Erst dank BBE können Pflanzen jene Biopolymere produzieren, die für Verholzung zuständig sind und Pflanzen Richtung Sonne wachsen lassen – Lignin.

Relevant für Pharmazie, Landwirtschaft und Biomasseverwertung

„Viele Aspekte der Ligninbiosynthese sind uns noch unbekannt. Wir wissen aber: Zellwandbiosynthese ist immer auch verbunden mit der Abwehr von Feinden. Lignin ist also nicht nur der Antrieb Richtung Sonne, sondern auch ein natürlicher Pflanzenschutz. Die Bildung von Lignin ist ein unglaublich komplexer Prozess, in dem viele Rädchen in einander greifen müssen, damit er reibungslos funktioniert. Und wir wissen nun, dass die BBE-Familie eine zentrale Rolle in diesem Prozess spielt“, unterstreicht Macheroux die Bedeutung des Ergebnisses.

Das Resultat ist nicht nur evolutionsbiologisch und pharmazeutisch sehr interessant: „Neben der pharmazeutischen Gewinnung und Verwendung pflanzlicher Wirkstoffe ist auch der landwirtschaftliche Pflanzenschutz ein Thema. Mit mehr Detailkenntnis über Lignin könnte man außerdem künftig Biomasse besser verwerten“, betont der Biochemiker. Aufbauend auf diese Ergebnisse widmet sich sein Team nun „in planta“-Versuchen: Sie schalten ganz gezielt BBE-Gene aus und beobachten die konkreten Auswirkungen auf die Pflanzen. Schon jetzt bestätigen die laufenden Untersuchungen: BBE beeinflusst die Ligninproduktion.

Zur Originalpublikation:

„Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism“
The Journal of Biological Chemistry, Vol. 290, Issue 30, 18770-18781, July 24, 2015. ARTICLE #10.1074/jbc.M115.659631
http://www.jbc.org/content/early/2015/06/02/jbc.M115.659631.abstract

Diese Arbeit ist im Field of Expertise „Human & Biotechnology“ verankert, einem von fünf Forschungsschwerpunkten der TU Graz.

Rückfragen:
Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Peter Macheroux
Institut für Biochemie
Tel.: +43 316 873 6450
E-Mail: peter.macheroux@tugraz.at

Mag. Susanne Eigner | Technische Universität Graz
Weitere Informationen:
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Lass uns eine Zelle bauen
22.01.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Naturstoffe gegen Fibrose und diastolische Herzschwäche entdeckt
22.01.2020 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lass uns eine Zelle bauen

22.01.2020 | Biowissenschaften Chemie

Messtechnische Unterstützung für chirurgische Eingriffe

22.01.2020 | Medizintechnik

Naturstoffe gegen Fibrose und diastolische Herzschwäche entdeckt

22.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics