Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronenstreuung klärt auf, wie Myoglobin ohne Wasser auskommen kann

08.08.2012
Proteine können auch ohne wässrige Umgebung ihre grundlegenden biologischen Funktionen erfüllen.

Dies fanden Wissenschaftler vom Institut de Biologie Structurale (IBS) in Grenoble, der Universität Bristol, der australischen nationalen Universität, dem Institut Laue-Langevin und dem Jülicher Zentrum für Forschung mit Neutronen heraus. Das Team zeigte mit Hilfe der Technik der Neutronenstreuung, dass sich Myoglobin genau so bewegt, als ob es von Wasser umgeben wäre, wenn es in eine Hülle von Polymeren eingeschlossen ist. Die Ergebnisse machen Proteine zu einem entwicklungsfähigen Material für neue Wundverbände oder sogar chemische Gassensoren.

Proteine können auch ohne wässrige Umgebung ihre grundlegenden biologischen Funktionen erfüllen. Dies fanden Wissenschaftler vom Institut de Biologie Structurale (IBS) in Grenoble, der Universität Bristol, der australischen nationalen Universität, dem Institut Laue-Langevin und dem Jülicher Zentrum für Forschung mit Neutronen heraus. In einem im Journal of the American Chemical Society veröffentlichten Beitrag zeigte das Team mit Hilfe der Technik der Neutronenstreuung, dass sich Myoglobin genau so bewegt, als ob es von Wasser umgeben wäre, wenn es in eine Hülle von Polymeren eingeschlossen ist.

Myoglobin ist ein im Muskelgewebe von Wirbeltieren vorkommendes, Sauerstoff bindendes Protein. Diese Bewegungen sind für die Erfüllung der biologischen Funktionen eines Proteins wesentlich und die Ergebnisse machen Proteine zu einem entwicklungsfähigen Material für neue Wundverbände oder sogar chemische Gassensoren.

Wasser ist die natürliche Umgebung für lösliche Proteine sowie integraler Bestandteil ihrer Strukturen und ermöglicht es ihnen, ihre spezifischen Funktionen auszuführen. Jahrelang nahm man an, dass Proteine nur in Wasser oder einem anderen Lösungsmittel funktionieren. Im Jahr 2010 wies jedoch das Team aus Bristol nach, dass es durch Aufbringen von Polymerketten auf die Proteinoberfläche möglich war, lösungsmittel- und wasserfreie Myoglobinflüssigkeiten herzustellen, die trotzdem ihre biologische Rolle erfüllen konnten. Wissenschaftler haben nun gezeigt, dass die Proteindynamik die Ursache dafür ist.

Myoglobin tritt in beinahe allen Säugetieren auf und ist für die rote Farbe von rohem Fleisch verantwortlich. Wie bei allen löslichen Proteinen ist seine Oberfläche mit Wassermolekülen bedeckt. Mit dieser Untersuchung wollten Forscher herausfinden, ob sich die Proteinstruktur noch bewegen und weiterhin Sauerstoff binden kann, wenn alles Wasser vollständig entfernt und durch synthetische Moleküle ersetzt wurde.

Das Team untersuchte drei Proben: eine nasse Probe (Protein in Wasser), eine trockene Probe (dehydriertes Protein) und eine trockene Protein-Polymer-Hybrid-Probe, bei der die Wassermoleküle durch synthetisch hergestellte Polyethylen-Polymer-Oberflächenmoleküle auf der Basis von Glykol ersetzt wurden. Mit der sogenannten inkohärenten Neutronenstreuung am Institut Laue-Langevin im französischen Grenoble und am FRMII in Garching sowie des Zentrums für Forschung mit Neutronen in Jülich konnte das Team die Bewegungen im Protein und der Polymeroberfläche getrennt beobachten. Diese Trennung wurde möglich durch eine in einem speziellen Deuterierungslabor am ILL vorgenommene Markierung, bei der entweder die Polymer- oder die Proteinbewegungen dadurch maskiert wurden, dass man Wasserstoff durch sein schwereres Isotop Deuterium ersetzte. Sie fanden heraus, dass sich die von Polymeren umgebenen Myoglobinmoleküle genauso bewegten wie bei der nassen Probe und dass die trockene Probe sehr geringe Beweglichkeit zeigte.

Das Wissen, dass Proteine ohne Wasser funktionieren können, eröffnet vielfältige Anwendungen im täglichen Leben; denn nun ist klar, dass es Alternativen gibt, wenn kein Wasser verfügbar ist. Mögliche Anwendungen sind biochemische Gassensoren, weil Myoglobin Kohlenmonoxidmoleküle binden kann. Eine andere mögliche Anwendung ist die Entwicklung neuer Wundverbände. Bei diesen kann das flüssige Protein entweder intern oder extern zu der Wunde gelangen, um die Ausheilzeit zu verkürzen, indem es dem verletzten Gewebe Sauerstoff oder andere wesentliche Chemikalien zuführt.

„Diese Entdeckungen haben unser grundlegendes Verständnis von Proteinen und ihrem Verhalten erweitert, was viele neue Möglichkeiten für ihre Anwendung in industriellen Verfahren und in der Medizin eröffnet. Die Tatsache, dass unsere Proteine ihre Funktion erfreulicherweise auch ohne Wasser erfüllen können, das man für unentbehrlich für das Leben hielt, beweist, wie robust diese biologischen Nanomaschinen sind“, so Adam Perriman von der Universität Bristol.

„Neutronenstreuverfahren eignen sich hervorragend zur Untersuchung der Dynamik von Proteinen und ihrer Umgebung. Mit den Neutronenstreueinrichtungen am ILL und FRMII können wir die Bewegungen von Proteinen analysieren und damit die durch Kristallografie gewonnenen einzelnen Momentaufnahmen ihrer Strukturen ergänzen“, bemerkt Martin Weik vom Institut de Biologie Structurale.

Anfang dieses Monats wandten Martin Weik und seine Kollegen vom IBS, dem ILL, der Universität Kalifornien, dem australischen Institut für Wissenschaft und Technologie und dem Zentrum für Forschung mit Neutronen Jülich am FRMII diese Techniken auf ein intrinsisch ungeordnetes Protein (IDP), genannt Tau, an, um zu untersuchen und zu verstehen, wie sich seine Flexibilität und seine Wechselwirkungen mit Wasser von geordneten Proteinen wie z.B. Myoglobin unterscheiden.

Sie fanden heraus, dass das ungeordnete Tau-Protein sehr viel stärker an Wasserbewegungen koppelt als gefaltete Proteine. IDPs sind in einem medizinischen Kontext von großem Interesse, weil sie zusammenaggregieren und clustern können, um die Amyloidfibrillen bei neuro-degenerativen Krankheiten wie Parkinson und Alzheimer zu erzeugen. Während die geordnete Struktur gefalteter Proteine die Entwicklung von Arzneien ermöglicht, die in das Protein wie ein Schlüssel in ein Schloss passen, macht die konformationelle Veränderlichkeit eines intrinsisch ungeordneten Proteins wie des Tau dies schwieriger. Ein tieferes Verständnis ihrer Dynamik ist notwendig. Die Entdeckung starker Kopplung mit Wasserbewegungen ist ein großer Schritt vorwärts.

Arno Laxy | idw
Weitere Informationen:
http://www.ill.eu/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was Vogelgrippe in menschlichen Zellen behindert
10.12.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Pflanzliche Reaktion bei Hitze: Der Kopf steckt im Boden
10.12.2019 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungsnachrichten

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics