Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mechanismus hinter der Wirkung von Hautkrebs-Medikament Imiquimod entschlüsselt

21.10.2016

Imiquimod ist ein Medikament, das erfolgreich bei Hauterkrankungen angewandt wird. Neben dem bereits bekannten Wirkungsmechanismus werden durch Imiquimod weitere Prozesse im Körper ausgelöst. Die molekularen Grundlagen dieser zusätzlichen Effekte konnten jetzt durch ein Team der Technischen Universität München (TUM) aufklärt werden. Die Ergebnisse werfen zudem neues Licht auf weitere molekulare Prozesse, die ein Ansatz oder zur Behandlung inflammatorischer Erkrankungen wie Gicht sein könnten.

Dass ein Medikament für den Gebrauch zugelassen ist, bedeutet nicht automatisch, dass seine Wirkungsweise vollständig erforscht und verstanden worden ist. Neue Erkenntnisse und technische Möglichkeiten erlauben immer genauere Einblicke in die Abläufe innerhalb des menschlichen Körpers. Dadurch wird auch klarer, wie bekannte Arzneien wirken und welche Ansätze für neue Medikamente sinnvoll sein könnten.


Dr. Christina J. Groß (links) und Dr. Ritu Mishra

Andreas Heddergott / TUM

PD Dr. Olaf Groß, Gruppenleiter am Institut für Klinische Chemie und Pathobiochemie der TUM, und sein Team haben mit Imiquimod ein Medikament unter die Lupe genommen, mit dem seit 1997 erfolgreich virale Infektionen der Haut und bestimmte Formen von Hautkrebs behandelt werden. Ihre Ergebnisse veröffentlichten die Wissenschaftlerinnen und Wissenschaftler im Fachmagazin „Immunity“.

Als sogenannter Immunmodulator löst Imiquimod eine Immunreaktion aus, die dazu führt, dass das körpereigene Abwehrsystem die veränderten Zellen bekämpft. Dieser Prozess war lange der einzige bekannte Wirkungsmechanismus des Medikaments. Mittlerweile ist aber erwiesen, dass es weitere Prozesse im Körper startet: Zum einen beeinflusst der Wirkstoff direkt das Wachstum von Krebszellen.

Zum anderen aktiviert Imiquimod einen Proteinkomplex, der Entzündungsprozesse im Körper steuert und als Inflammasom bezeichnet wird. Der Begriff „Entzündung“ mag zunächst negative Assoziationen hervorrufen, im Normalfall unterstützen Entzündungsprozesse aber die Bekämpfung von Fremdkörpern und veränderten Zellen. Das Inflammasom kann sowohl zu diesen Schutzmechanismen beitragen, aber auch zerstörerisch wirken, wenn es überreagiert. „Wir nehmen an, dass diese anderen Wirkungsmechanismen von Imiquimod zu den positiven Auswirkungen des Medikaments oder zu seinen Nebenwirkungen beitragen“, sagt Olaf Groß.

Eingriff in die Atmungskette

Imiquimod aktiviert das NLRP3-Inflammasom, ein Inflammasom, das auf zellulären Stress und Gewebeschäden reagiert. Olaf Groß und sein Team konnten zeigen, dass NLRP3 aktiviert wird, weil Imiquimod in die Atmungsprozesse der Zellen eingreift. Die Atmungskette ist eine komplexe Reihe biochemischer Reaktionen innerhalb von Mitochondrien, den Kraftwerken der Zelle, an deren Ende das Molekül Adenosintriphosphat, kurz ATP, gebildet wird, dass den Rest der Zelle mit Energie versorgt.

„Durch die Hemmung der Zellatmung wird nicht nur die Produktion von ATP gestoppt, sondern es werden auch Sauerstoffradikale freigesetzt, also giftige Formen von Sauerstoff, die besonders schnell mit anderen Stoffen reagieren", erläutert Dr. Ritu Mishra, eine der beiden Erstautorinnen der Studie. „Imiquimod sorgt dafür, dass besonders viele Radikale freigesetzt werden. Anders als bei anderen Substanzen, die in die Atmungskette eingreifen, aber weniger Radikale erzeugen, wird hier eine Schwelle überschritten, die es möglich macht, dass NLRP3 aktiviert wird.“

Ansatz für Behandlung von inflammatorischen Erkrankungen

„Es herrscht allgemein großes Interesse an der Entwicklung von neue Medikamenten die NLRP3 hemmen und damit Entzündungen unterdrücken“, sagt Dr. Christina J. Groß , ebenfalls Erstautorin der Studie. „Wir hoffen, dass unsere Forschung dazu beiträgt, dass Medikamente entwickelt werden können, die die gefährliche Hyperaktivierung des NLRP3 Inflammasoms verhindern, wie sie bei Erkrankungen wie Gicht oder Multipler Sklerose auftritt.“ Wie sich Imiquimod genau auf Hautkrebszellen auswirkt, und ob die Hemmung der Zellatmung hinter dem Mechanismus der Hemmung des Wachstums von Krebszellen durch die Substanz steht, untersuchen Olaf Groß und sein Team in einer laufenden Nachfolgearbeit. Im Anschluss daran wollen sie neue, mit Imiquimod verwandte chemische Substanzen untersuchen, um herauszufinden, wie sich die verschiedenen Effekte des Medikaments entkoppeln lassen.

Publikation

C.J. Groß, R. Mishra, K.S. Schneider, G. Médard, J. Wettmarshausen, D.C. Dittlein, H. Shi, O. Gorka, P.-A. Koenig, S. Fromm, G. Magnani, T. Ćiković, L. Hartjes, J. Smollich, A.A.B. Robertson, M.A. Cooper, M. Schmidt-Supprian, M. Schuster, K. Schroder, P. Broz, C. Traidl-Hoffmann, B. Beutler, B. Kuster, J. Ruland, S. Schneider, F. Perocchi, O. Groß. "K+ Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria". Immunity (2016). DOI: http://dx.doi.org/10.1016/j.immuni.2016.08.010

Hochauflösende Bilder

http://go.tum.de/174109

Kontakt:

PD Dr. rer. nat. Olaf Groß
Institut für Klinische Chemie und Pathobiochemie Klinikum rechts der Isar
Technische Universität München
+49 89 4140-4874
olaf.gross@tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics