Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle verformen sich bei Nässe

21.11.2016

Breitband-Rotationsspektroskopie enthüllt Strukturänderungen isolierter, gasförmiger Moleküle bei ihrer Bindung an Wasser

In zwei kürzlich erschienenen Veröffentlichungen im Journal of Chemical Physics und im Journal of Physical Chemistry Letters konnten Forscher um Melanie Schnell vom Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL und vom Hamburg Centre for Ultrafast Imaging (CUI) zeigen, dass Wasser eine Strukturänderung von flexiblen Molekülen begünstigt – hier an den chemisch faszinierenden Beispielen Kronenether und Biphenyl-Moleküle studiert.


Die bevorzugte Struktur eines Kronenethers verändert sich, wenn Wassermoleküle daran binden (gestrichelte Linien).

© C. Pérez et al.


Ein Draht aus zwei Wassermolekülen verbindet die beiden Ringe eines Biphenyl-Systems (gestrichelte Linien) und verändert den Winkel zwischen den beiden Ringen (roter Pfeil).

© S. R. Domingos et al.

Kronenether sind entscheidende Systeme in Katalyse-, Trennungs- und Einschlussprozessen, während Biphenyl-basierte Systeme in der asymmetrischen Synthese und im Wirkstoffdesign für Arzneimittel Verwendung finden.

Wasser hat einen tiefgreifenden Einfluss auf unsere Welt. Durch seine bekannte – aber nicht vollends verstandene – Rolle in der Vermittlung von Proteinfaltungsdynamik und Protonentransport in Membranen nimmt Wasser eine Schlüsselrolle ein; es beeinflusst die Mechanik vieler biologischer und synthetischer Prozesse. In den aktuellen Studien verwenden die Wissenschaftler hochaufgelöste Rotationsspektroskopie, um die strukturellen Auswirkungen zu untersuchen, die Wasser in zwei Arten von Molekülsystemen hervorruft, welche im Bereich der Chemie unterschiedliche Rollen spielen.

Isolierte mikrosolvatisierte Moleküle in der Gasphase haben sich zu einem bevorzugten Untersuchungsgegenstand entwickelt, um die schrittweise Hydration molekularer Systeme aufzuzeigen. Die Hamburger Gruppe von Melanie Schnell folgt diesem Ansatz für die Aufdeckung der Effekte auf organische Moleküle, wenn sich die ersten Wassermoleküle an ihnen anlagern und die Grundlage für die sogenannte erste Solvatisierungshülle bilden.

Kronenether sind zyklische Moleküle, die von ihrer Struktur her einer Krone ähneln. Sie besitzen eine außergewöhnliche Selektivität für den Einschluss von Kationen innerhalb der Krone. Diese Funktion kann sowohl nützlich als auch schädlich sein, je nach Größe der Krone und der sich daraus ergebenden Fähigkeit, kleinere oder größere Kationen wie Kalium, Natrium oder Lithium an sich zu binden. Kronenether sind daher hochgradig funktionale Systeme. In der aktuellen Arbeit entdeckten die Autoren, dass sich die bevorzugte Gestalt der Kronenether bei der Bindung mit Wasser verändert.

„Die unerwartete strukturelle Veränderung durch die Hydration der Krone offenbart neue Möglichkeiten für Wirt-Gast-Wechselwirkungen“, sagt Cristóbal Pérez, Postdoktorand am MPSD und Erstautor der Arbeit. Die erwartete Effizienz für den Einfang anderer Molekülsorten kann sich durch die Anwesenheit von Wasser verändern. Angesichts der Häufigkeit von Wasser auf molekularer Ebene, auf der viele biologische Prozesse ablaufen, ist dies eine wichtige Erkenntnis für Chemiker, die sich mit Katalyse befassen und Kronenether verwenden.

Biphenyl-basierte Systeme bestehen im Zentrum aus zwei Benzolringen (C6H6), die über eine Achse verbunden sind. Durch Überwindung einer niedrigen Energiebarriere können sich die beiden Ringe gegeneinander verdrehen. Drehungen mit und entgegen dem Uhrzeigersinn erzeugen Spiegelbilder desselben Moleküls, welche sich nicht überlagern lassen und daher als chiral bezeichnet werden. Die Fähigkeit, Spiegelbildvarianten chiraler Moleküle zu identifizieren und zuzuordnen, ist ein entscheidender Schritt im Wirkstoffdesign der pharmazeutischen Industrie. Biphenyle kommen beispielsweise in Wirkstoffen gegen Tuberkulose vor.

In der aktuellen Studie wird gezeigt, dass das Biphenyl-System bei Hydration zwei zusammenhängende Wassermoleküle anlagert, die die Autoren „water-wire“ nennen. Dieser „Wasser-Draht“ verbindet die beiden Biphenyl-Ringe und fixiert folglich ihre Position zueinander. Mit diesem Feststellmechanismus durch die Gegenwart des Wassers geht eine messbare Veränderung im Winkel zwischen den Ringen einher. „Das beobachtete Phänomen liefert uns neue Hinweise darüber, wie Wasser die Wechselwirkungen zwischen einem Molekül und einem potentiellen Rezeptor vermitteln kann“, sagt Sérgio Domingos, Postdoktorand am MPSD und Erstautor der Arbeit. Die beobachteten Wasser-induzierten Strukturänderungen sind aufschlussreich für die Rolle der Hydration bei der Regulierung komplexerer biologischer Prozesse, welche in Umgebungen stattfinden, in denen Wasser das vorherrschende Medium ist.

Ansprechpartner:

Dr. Cristóbal Pérez
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6233
cristobal.perez@mpsd.mpg.de

Dr. Sérgio Domingos
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6233
sergio.domingos@mpsd.mpg.de

PD Dr. Melanie Schnell
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6240
melanie.schnell@mpsd.mpg.de

Originalpublikationen:

C. Pérez, J. C. López, S. Blanco, and M. Schnell, "Water-Induced Structural Changes in Crown Ethers from Broadband Rotational Spectroscopy," The Journal of Physical Chemistry Letters 7 (20), 4053-4058 (2016); DOI: 10.1021/acs.jpclett.6b01939

S. R. Domingos, C. Pérez, and M. Schnell, "Communication: Structural locking mediated by a water wire: A high-resolution rotational spectroscopy study on hydrated forms of a chiral biphenyl derivative," The Journal of Chemical Physics 145 (16), 161103 (2016); DOI: 10.1063/1.4966584

Weitere Informationen:

https://dx.doi.org/10.1021/acs.jpclett.6b01939 Originalpublikation
https://dx.doi.org/10.1063/1.4966584 Originalpublikation
http://www.mpsd.mpg.de/research/rg/ccm Forschungsgruppe von PD Dr. Melanie Schnell
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien schwärmen aus
17.01.2019 | Philipps-Universität Marburg

nachricht Forscher der TU Dresden finden neuen Ansatz für Therapien für neurodegenerative Erkrankungen
17.01.2019 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leistungsschub für alle Omicron Laser

17.01.2019 | Messenachrichten

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungsnachrichten

Mit Blutgefäßen aus Stammzellen gegen Volkskrankheit Diabetes

17.01.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics